Skip to main content

Biosurfactant-Aided Bioprocessing: Industrial Applications and Environmental Impact

  • Chapter
  • First Online:
Book cover Recent advances in Applied Microbiology

Abstract

Surfactants are classified as ionic, nonionic, and zwitterionic surfactants based on the ionic properties of the polar head group. Biosurfactants are surface-active compounds produced by microbes, possessing both hydrophilic and hydrophobic moieties. In biosurfactants, the lipophilic moiety is generally a protein or peptide with a high fraction of hydrophobic side chains or a hydrocarbon chain of a fatty acid with 10 to 18 carbon atoms, whereas the hydrophilic moiety is an ester; hydroxyl, phosphate, and carboxylate group; or sugar. Biosurfactants have specific advantages over chemical surfactants, such as biodegradable and environmental-friendly nature, production at lower temperatures, effectiveness at low concentrations, low toxicity, high selectivity because of the presence of specific functional groups, and efficiency to work at extreme environmental conditions of temperatures, pH, and salinity, rendering them suitable for different industrial applications. However, large-scale commercial application of biosurfactants is impeded because of their high production costs, ineffective bioprocessing methods, less efficient microbial strains, and the exorbitant downstream processing costs. Biosurfactants find potential industrial application in areas, such as disruption of cell biomass, hydrocarbon bioremediation, and heavy metal bioremediation. Different groups of microbes, such as bacteria, yeasts, fungi, and actinomycetes are capable of producing biosurfactants. Some of the extensively studied biosurfactant producing microbial genera include Pseudomonas, Acinetobacter, Bacillus, Candida and Torulopsis. Development of improved and cost-efficient application technologies coupled with genetic engineering and strain improvement techniques and improved production processes will help in large-scale application of biosurfactants in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abraham M (2003) Wetting of hydrophobic rough surfaces: to be heterogeneous or not to be. Langmuir 4:8343–8348

    Google Scholar 

  • Adrion AC, Nakamura J, Shea D, Aitken MD (2016a) Screening nonionic surfactants for enhanced biodegradation of polycyclic aromatic hydrocarbons remaining in oil after conventional biological treatment. Environ Sci Technol 50(7):3838–3845. doi:10.1021/acs.est.5b05243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adrion AC, Singleton DR, Jun N, Damian S, Aitken MD (2016b) Improving polycyclic aromatic hydrocarbon biodegradation in contaminated soil through low-level surfactant addition after conventional bioremediation. Environ Eng Sci 33(9):659–670. doi:10.1089/ees.2016.0128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad AL, Yasin NHM, Derek CJC, Lim JK (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Sust Energ Rev 15:584–593

    Article  CAS  Google Scholar 

  • Al-Bhary SN, Al-Wahaibi YM, Elshafie AE, Al-Bemani AS, Joshi SJ, Al-akhmari HS, Al-Sulaimani HS (2013) Biosurfactant production by Bacillus subtilis B20 using date molasses and its possible application in enhanced oil recovery. Int Biodeterior Biodegrad 81:141–146

    Article  CAS  Google Scholar 

  • Alvira P, Ballesteros M, Negro MJ (2013) Progress on enzymatic saccharification technologies for biofuels production. In: Gupta VK, Tuohy MG (eds) Biofuel technologies: recent developments. Springer, Berlin, Germany, pp 145–169

    Chapter  Google Scholar 

  • Amin GA (2010) A potent biosurfactant producing bacterial strain for application in enhanced oil recovery applications. J Pet Environ Biotechnol 1:104–111. doi:10.4172/2157-7463.1000104

    Article  CAS  Google Scholar 

  • Anwar Z, Gulfraz IM (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiation Res Appl Sci 7:163–173

    Article  CAS  Google Scholar 

  • Appanna VD, Finn H, Pierre M (1995) Exocellular phosphatidylethanolamine production and multiple-metal tolerance in Pseudomonas fluorescens. FEMS Microbiol Lett 131:53–56

    Article  CAS  Google Scholar 

  • Arguelles-Arias A, Ongena M, Halimi B (2009) Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microb Cell Factories 8:63–71

    Article  CAS  Google Scholar 

  • Arparna A, Srinikethan G, Hedge S (2011) Effect of addition of biosurfactant produced by Pseudomonas ssp. on biodegradation of crude oil. In: 2nd International proceedings of chemical, biological and environmental engineering, Singapore, 26–28 February 2011, vol 6, p 71–75

    Google Scholar 

  • Asci Y, Nurbaş M, Acikel YS (2008) A comparative study for the sorption of Cd(II) by soils with different clay contents and mineralogy and the recovery of Cd(II) using rhamnolipid biosurfactant. J Hazd Mater 154:663–673

    Article  CAS  Google Scholar 

  • Aulwar U, Awasthi RS (2016) Production of biosurfactant and their role in bioremediation. J Ecosys Ecograph 6:202. doi:10.4172/2157-7625.1000202

    Article  Google Scholar 

  • Azarmi R, Ashjaran A (2015) Type and application of some common surfactants. J Chem Pharm Res 7(2):632–640

    CAS  Google Scholar 

  • Balan V (2014) Current challenges in commercially producing biofuels from lignocellulosic biomass. Hindawi Publishing Corporation ISRN Biotechnology 463074. doi:10.1155/2014/463074

    Article  CAS  Google Scholar 

  • Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Environ Microbiol 53:495–508

    CAS  Google Scholar 

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications. Appl Microbiol Biotechnol 87:427–444

    Article  CAS  PubMed  Google Scholar 

  • Banat IM, Satpute SK, Cameotra SS (2014) Cost effective technologies and renewable substrates for biosurfactants production. Front Microbiol 5:1–18

    Article  Google Scholar 

  • Bardant TB, Abimanyu SH, Hanum AK (2013) Effect of non-ionic surfactant addition to cellulase performance in high substrate loading hydrolysis of palm oil EFB and water hyacinth. Indo J Chem 13(1):53–58

    Article  CAS  Google Scholar 

  • Baviere M, Degouy D, Lecourtier J (1994) Process for washing solid particles comprising a sophoroside solution. US Patent 5:32–407

    Google Scholar 

  • Bondioli P, Bella LD, Rivolta G, Zittelli GC, Bassi N, Rodolfi L, Casini D, Prussi M, Chiaramonti D, Tredici MR (2012) Oil production by the marine microalgae Nannochloropsis sp. F and M-M24 and Tetraselmis suecica F and M-M33. Bioresour Technol 114:567–572

    Article  CAS  PubMed  Google Scholar 

  • BP Statistical Review of World Energy (2016) Centre for Energy Economics Research and Policy, Heriot-watt university, 65th edn. Whitehouse Associates/Pureprint Group Limited, London, pp 1–48

    Google Scholar 

  • Cameron DR, Cooper DG, Neufeld RJ (1988) The mannoprotein of Saccharomyces cerevisiae is an effective bioemulsifier. Appl Environ Microbiol 54:1420–1425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campos JM, Stamford TLM, Sarubbo LA, Luna JM, Rufino RD, Banat IM (2013) Microbial biosurfactants as additives for food industries. Biotechnol Prog 29:1097–1108

    Article  CAS  PubMed  Google Scholar 

  • Carriquiry MA, Du X, Timilsina GR (2011) Second generation biofuels: economics and policies. Energ Pol 39(7):4222–4234

    Article  Google Scholar 

  • Carter KC, Puig-Sellart M (2016) Nanocarriers made from non-ionic surfactants or natural polymers for pulmonary drug delivery. Curr Pharm Des 22(22):3324–3331

    Article  CAS  PubMed  Google Scholar 

  • Chaprao MJ, Ferreira INS, Correa PF, Rufino RD, Luna JM, Silva EJ, Sarubbo LA (2015) Application of bacterial and yeast biosurfactants for enhanced removal and biodegradation of motor oil from contaminated sand. Electron J Biotechnol 18:471–479

    Article  CAS  Google Scholar 

  • Chavez SG, Maier RM (2011) Biosurfactants: a general overview. In: Chavez SG (ed) Biosurfactants. Springer-Verlag, Berlin, pp 1–11

    Chapter  Google Scholar 

  • Christofi N, Ivshina IB (2002) Microbial surfactants and their use in field studies of soil remediation. J Appl Microbiol 93:915–929

    Article  CAS  PubMed  Google Scholar 

  • Cirigliano MC, Carman GM (1984) Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 50:846–850

    Google Scholar 

  • Das P, Mukherjee S, Sen R (2009) Biosurfactant of marine origin exhibiting heavy metal remediation properties. Bioresour Technol 100:4887–4890

    Article  CAS  PubMed  Google Scholar 

  • Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Res 61:47–64

    CAS  Google Scholar 

  • de la Cueva SC, Rodríguez CH, Cruz NOS (2016) Changes in bacterial populations during bioremediation of soil contaminated with petroleum hydrocarbons. Water Air Soil Pollut 227:91. doi:10.1007/s11270-016-2789-z

    Article  CAS  Google Scholar 

  • Eckard AD, Muthukumarappan K, Gibbons W (2013a) A review of the role of amphiphiles in biomass to ethanol conversion. Appl Sci 3:396–419. doi:10.3390/app3020396

    Article  CAS  Google Scholar 

  • Eckard AD, Muthukumarappan K, Gibbons W (2013b) Enzyme recycling in a simultaneous and separate saccharification and fermentation of corn stover: comparing polymeric micelles of surfactants and polypeptides. Bioresour Technol 132:202–209

    Article  CAS  PubMed  Google Scholar 

  • El-Sheshtawy HS, Aiada I, Osmanb ME, Abo-Elnasr AA, Kobisya AS (2015) Production of biosurfactant from Bacillus licheniformis for microbial enhanced oil recovery and inhibition the growth of sulfate reducing bacteria. Egypt J Petr 24(2):155–162

    Article  Google Scholar 

  • Eriksson T, Borjesson J, Tjerneld F (2002) Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzym Microb Technol 31:353–364

    Article  CAS  Google Scholar 

  • Felse PA, Shah V, Chan J (2007) Sophorolipid biosynthesis by Candida bombicola from industrial fatty acid residues. Enz Microbiol Technol 40:316–323

    Article  CAS  Google Scholar 

  • Franzetti A, Gandolfi I, Bestetti G, Smyth TJ, Banat IM (2010) Production and applications of trehalose lipid biosurfactants. Eur J Lipid Sci Tech 112:617–627

    Article  CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Env Manag 92(3):407–418

    Article  CAS  Google Scholar 

  • GAF (1950) General Aniline and Film Corp. for their surface active products. For an example of one of GAF Corp’s. early advertisements promoting their trademarked surfactants. Business Week, March 11, p 42

    Google Scholar 

  • Gerken HG, Donohoe B, Knoshaug EP (2013) Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta 237:239–253. doi:10.1007/s00425-012-1765-0

    Article  CAS  PubMed  Google Scholar 

  • Gerson OF, Zajic JE (1978) Surfactant production from hydrocarbons by Corynebacterium lepus, sp. nov. and Pseudomonas asphaltenicus, sp. nov. dev. Ind J Microbiol 19:577–599

    Google Scholar 

  • Global Food Policy Report (2016) International Food Policy Research Institute (IFPRI), Washington, DC. ISBN: 978-0-89629-582-7, pp 23–34. doi:10.2499/9780896295827

  • Golabi E (2016) Experimental study of effect of microbial enhanced oil recovery on rag Sefid reservoir. Int J Chem Stud 4(1):43–45

    CAS  Google Scholar 

  • Green JM, Beestman GB (2007) Recently patented and commercialized formulation and adjuvant technology. Crop Protec 26(3):320–327

    Article  CAS  Google Scholar 

  • Greenwell HC, Loyd-Evans M, Wenner C (2012) Biofuels, science and society. Interface Focus 3:1–4

    Article  Google Scholar 

  • Gregg D, Saddler JN (1996) Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnol Bioeng 51:375–383

    Article  CAS  PubMed  Google Scholar 

  • Halim R, Danquah MK, Webley PA (2012) Extraction of oil from microalgae for biodiesel production: a review. Biotechnol Adv 30(3):709–732. doi:10.1016/j.biotechadv.2012.01.001

    Article  CAS  PubMed  Google Scholar 

  • Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS (2010) Cellulose crystallinity-a key predictor of the enzymatic hydrolysis rate. FEBS J 277(6):1571–1582

    Article  CAS  PubMed  Google Scholar 

  • Herman DC, Maier RM (2002) Biosynthesis and applications of glycolipid and lipopeptide biosurfactants. In: Kuo TM, Gardner HW (eds) Lipid biotechnology. Marcel Dekker, New York, pp 629–654

    Google Scholar 

  • Hsieh CC, Cannella D, Jørgensen H, Felby C, Thygesen LG (2015) Cellobiohydrolase and endoglucanase respond differently to surfactants during the hydrolysis of cellulose. Biotechnol Biofuels 8(52):1–10. doi:10.1186/s13068-015-0242-y

    Article  CAS  Google Scholar 

  • Huang WC, Kim JD (2013) Cationic surfactant-based method for simultaneous harvesting and cell disruption of a microalgal biomass. Bioresour Technol 149:579–581

    Article  CAS  PubMed  Google Scholar 

  • Information Handling Services (2016) Chemical Economics Handbook: Surfactants, household detergents and their raw materials, p 16–19. (www.ihs.com/products/surfactants-household-detergents-chemical-economics-handbook.html)

  • Ikegami M, Whitsett JA, Jobe A, Ross G, Fisher J, Korfhagen T (2000) Surfactant metabolism in SP-D gene-targeted mice. Am J Physiol Lung Cell Mol Physiol 279(3):468–476

    Article  Google Scholar 

  • Ishigami Y, Zhang Y, Ji F (2000) Spiculisporic acid. Functional development of biosurfactants. Chim Oggi 18:32–34

    CAS  Google Scholar 

  • Ivankovic T, Hrenovic J (2010) Surfactants in the environment: a review. Arh Hig Rada Toksikol 61:95–110. doi:10.2478/10004-1254-61-2010-1943

    Article  CAS  PubMed  Google Scholar 

  • Jadhav M, Kalme S, Tamboli D (2011) Rhamnolipid from Pseudomonas desmolyticum NCIM-2112 and its role in the degradation of brown 3REL. J Basic Microbiol 51:1–12

    Article  CAS  Google Scholar 

  • Jaiswal M, Dudhe R, Sharma PK (2015) Nanoemulsion: an advanced mode of drug delivery system. 3. Biotech 5(2):123–127. doi:10.1007/s13205-014-0214-0

    Article  Google Scholar 

  • Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98(1):112–122

    Article  CAS  PubMed  Google Scholar 

  • Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68:1996–2002

    Article  CAS  PubMed  Google Scholar 

  • Juwarkar AA, Dubey KV, Nair A, Singh SK (2008) Bioremediation of multi-metal contaminated soil using biosurfactant—a novel approach. Ind J Microbiol 48:142–146

    Article  CAS  Google Scholar 

  • Kaar WE, Holtzapple M (1998) Benefits from tween during enzymatic hydrolysis of corn stover. Biotechnol Bioeng 59:419–427

    Article  CAS  PubMed  Google Scholar 

  • Kapadia SG, Yagnik BN (2013) Current trend and potential for microbial biosurfactants. Asian J Exp Biol Sci 4:1–8

    CAS  Google Scholar 

  • Karmee SK, Lin CSK (2014) Valorisation of food waste to biofuel: current trends and technological challenges. Sustainable Chem Proc 2:22–32

    Article  CAS  Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375

    Article  Google Scholar 

  • Kim J, Grate JW, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61(3):1017–1026

    Article  CAS  Google Scholar 

  • Kim JH, Lee JC, Pak D (2011) Feasibility of producing ethanol from food waste. Waste Manag 31:2121–2125

    Article  CAS  PubMed  Google Scholar 

  • Kiran GS, Sabu A, Selvin J (2010) Synthesis of silver nanoparticles by glycolipid biosurfactant produced from marine Brevibacterium casei MSA19. J Biotechnol 148:221–225

    Article  CAS  PubMed  Google Scholar 

  • Kralova I, Sjoblom J (2009) Surfactants used in food industry: a review. J Dispers Sci Technol 30:1363–1383

    Article  CAS  Google Scholar 

  • Krieger N, Doumit C, David AM (2010) Production of microbial biosurfactants by solid-state cultivation. Adv Exp Med Biol 672:203–210

    Article  CAS  PubMed  Google Scholar 

  • Kristensen JB, Borjesson J, Maria H, Tjerneld BF, Jorgensen H (2007) Use of surface active additives in enzymatic hydrolysis of wheat straw lignocellulose. Enz Microb Technol 40:888–895

    Article  CAS  Google Scholar 

  • Kugler JH, Le Roes-Hill M, Syldatk C, Hausmann R (2015) Surfactants tailored by the class Actinobacteria. Front Microbiol 6:212–219. doi:10.3389/fmicb.2015.00212

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Tabatabaei M, Karimi K, Horváth IS (2016) Recent updates on lignocellulosic biomass derived ethanol – a review. Biofuel Res J 9:347–356

    Article  Google Scholar 

  • Lai YJS, De Francesco F, Aguinaga A, Parameswaran P, Rittmanna BE (2016) Improving lipid recovery from Scenedesmus wet biomass by surfactant-assisted disruption. Green Chem 18:1319–1326

    Article  CAS  Google Scholar 

  • Lal R (2005) World crop residues production and implications of its use as a biofuel. Environ Int 31(4):575–584

    Article  CAS  PubMed  Google Scholar 

  • Ławniczak L, Marecik R, Chrzanowski L (2013) Contributions of biosurfactants to natural or induced bioremediation. Appl Microbiol Biotechnol 97:2327–2339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee DH (2011) Algal biodiesel economy and competition among biofuels. Bioresour Technol 102:43–49

    Article  CAS  PubMed  Google Scholar 

  • Lee RA, Lavoie JM (2013) From first – to third-generation biofuels: challenges of producing a commodity from a biomass of increasing complexity. Animal Front 3(2):6–11

    Article  Google Scholar 

  • Li Y, Sun Z, Ge X, Zhang J (2016) Effects of lignin and surfactant on adsorption and hydrolysis of cellulases on cellulose. Biotechnol Biofuels 9(20):1–10. doi:10.1186/s13068-016-0434-0

    Article  CAS  Google Scholar 

  • Liang K, Zhang Q, Cong W (2012) Enzyme-assisted aqueous extraction of lipid from microalgae. J Agric Food Chem 60(47):11771–11776. doi:10.1021/jf302836v

    Article  CAS  PubMed  Google Scholar 

  • Liang LX, Qing QX, Ming LH, Hao LZ, Xin ZN, Hao HJ, Xia PY (2016) Enhancement of lignosulfonate-based polyoxyethylene ether on enzymatic hydrolysis of lignocelluloses. Indus Crops Prod 80:86–92

    Article  CAS  Google Scholar 

  • Liu JF, Mbadinga SM, Yang SZ, Gu JD, Mu BM (2015) Chemical structure, property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation. Int J Mol Sci 16:4814–4837. doi:10.3390/ijms16034814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo L, van der Voet E, Huppes G (2010) Biorefining of lignocellulosic feedstock—technical, economic and environmental considerations. Bioresour Technol 101(13):5023–5032

    Article  CAS  PubMed  Google Scholar 

  • Maier RM, Chávez SG (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633

    Article  CAS  PubMed  Google Scholar 

  • Mainkar AR, Jolly CI (2001) Formulation of natural shampoos. Int J Cosmetic Sci 23:59–62

    Article  CAS  Google Scholar 

  • Makkar RS, Cameotra SS (1999) Biosurfactant production by microorganisms on unconventional carbon sources. J Surfact Deterg 2:2–16

    Google Scholar 

  • Makkar RS, Cameotra SS (2002) An update on use of unconventional substrates for biosurfactants production and their new applications. Appl Microbiol Biotechnol 58:428–434

    Article  CAS  PubMed  Google Scholar 

  • Makkar RS, Banat IM, Cameotra SS (2011) Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1:5–17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marchant R, Banat IM (2012) Microbial biosurfactants: challenges and opportunities for future exploitation. Trends Biotechnol 30:558–565. doi:10.1016/j.tibtech.2012.07.003

    Article  CAS  PubMed  Google Scholar 

  • Matsakas L, Kekos D, Loizidou M, Christakopoulos P (2014) Utilization of household food waste for the production of ethanol at high dry material content. Biotechnol Biofuels 7:4–12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McClure CD, Schiller NL (1996) Inhibition of macrophage phagocytosis by Pseudomonas aeruginosa rhamnolipids in vitro and in vivo. Curr Microbiol 33:109–117

    Article  CAS  PubMed  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energ Combustion Sci 38(4):522–550

    Article  CAS  Google Scholar 

  • Mesquita JF, Ferraz A, Aguiar A (2016) Alkaline-sulfite pretreatment and use of surfactants during enzymatic hydrolysis to enhance ethanol production from sugarcane bagasse. Bioprocess Biosyst Eng 39:441–448. doi:10.1007/s00449-015-1527-z

    Article  CAS  PubMed  Google Scholar 

  • Min BC, Bhayani BV, Jampana V, Ramarao BV (2015) Enhancement of the enzymatic hydrolysis of fines from recycled paper mill waste rejects. Bioresour Bioproc 2(40):1–10. doi:10.1186/s40643-015-0068-2

    Article  Google Scholar 

  • Mishra M, Muthuprasanna P, Surya prabha K, Rani PS, Babu IAS, Chandiran IS, Arunachalam G, Shalini S (2009) Basics and potential applications of surfactants – a review. Int J PharmTech Research, 1: 1354-1365, ISSN:0974-4304

    Google Scholar 

  • Morsy SMI (2014) Review article: role of surfactants in nanotechnology and their applications. Int J Curr Microbiol App Sci 3(5):237–260

    CAS  Google Scholar 

  • Mujumdar S, Bashetti S, Pardeshi S, Thombre RS (2016) Industrial applications of biosurfactants. In: Thangadurai D, Sangeetha J (eds) Industrial biotechnology: sustainable production and bioresource utilization. CRC Press, Boca Raton, pp 61–90. ISBN 177188262X, 9781771882620

    Google Scholar 

  • Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133:183–198

    Article  CAS  PubMed  Google Scholar 

  • Mulligan CN, Gibbs BF (2004) Types, production and applications of biosurfactants. Proc Ind Nat Sci Acad 1:31–55

    Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sust Energ Rev 14:578–597

    Article  CAS  Google Scholar 

  • Nanda S, Mohammad J, Reddy S, Kozinski J, Dalai A (2014) Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Conver Bioref 4:157–191. doi:10.1007/s13399-013-0097-z

    Article  CAS  Google Scholar 

  • Naqvi M, Yan J (2015) First-generation biofuels. Handbook of clean energy systems. Wiley, Chichester, pp 1–18. doi:10.1002/9781118991978.hces207

    Book  Google Scholar 

  • Nasirpour N, Mousavi SM, Shojaosadati SA (2014) A novel surfactant-assisted ionic liquid pretreatment of sugarcane bagasse for enhanced enzymatic hydrolysis. Bioresour Technol 169:33–37

    Article  CAS  PubMed  Google Scholar 

  • Nievas ML, Commendatore MG, Estevas JL, Bucala V (2008) Biodegradation pattern of hydrocarbons from a fuel oil-type complex residue by an emulsifier-producing microbial consortium. J Hazard Matter 154:96–104

    Article  CAS  Google Scholar 

  • Oberoi HS, Vadlani PV, Madl RL, Saida L, Abeykoon JP (2010) Ethanol production from orange peels: two-stage hydrolysis and fermentation studies using optimized parameters through experimental design. J Agric Food Chem 58:3422–3429

    Article  CAS  PubMed  Google Scholar 

  • Park JW, Takahata Y, Kajiuchi T, Akehata T (1992) Effects of nonionic surfactant on enzymatic hydrolysis of used newspaper. Biotechnol Bioeng 39:117–120

    Article  CAS  PubMed  Google Scholar 

  • Parnthong J, Kungsanant S (2014) Statistical optimization for application of nonionic surfactants in enzymatic hydrolysis of palm fiber for ethanol production. Int J Chem Eng App 5:23–25

    CAS  Google Scholar 

  • Peng JF, Song YH, Yuan P, Cui XY, Qiu GL (2009) The remediation of heavy metals contaminated sediment. J Hazard Mat 161(30):633–640

    Article  CAS  Google Scholar 

  • Pereira BL, Francisco SM, da Silva SS (2016) Recent advances in sustainable production and application of biosurfactants in Brazil and Latin America. Indus Biotechnol 12(1):31–39. doi:10.1089/ind.2015.0027

    Article  CAS  Google Scholar 

  • Perlack RD, Wright LL, Turhollow AF, Graham RL, Stokes BJ, Erbach DC (2005) Biomass as a feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National laboratory, US Department of Agriculture (USDA), pp 1–54. Available electronically at: http://www.osti.gov/bridge

  • Perlack RD, Stokes BJ (2011) US billion-ton update: biomass supply for a bioenergy and bioproducts industry. US Department of Energy, Oak Ridge National Laboratory, Oak Ridge

    Google Scholar 

  • Pleissner D, Lam WC, Sun Z, Lin CSK (2013) Food waste as nutrient source in heterotrophic microalgae cultivation. Bioresour Technol 137:139–146

    Article  CAS  PubMed  Google Scholar 

  • Pleissner D, Kwan TH, Lin CSK (2014) Fungal hydrolysis in submerged fermentation for food waste treatment and fermentation feedstock preparation. Bioresour Technol 158:48–54

    Article  CAS  PubMed  Google Scholar 

  • Płociniczak MP, Płaza GA, Seget ZP, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12:633–654. doi:10.3390/ijms12010633

    Article  CAS  Google Scholar 

  • Pothiraj C, Kanmani P, Balaji P (2006) Bioconversion of lignocellulose materials. Mycobiol 34(4):159–165

    Article  CAS  Google Scholar 

  • Qing Q, Yang B, Wyman CE (2010) Impact of surfactants on pretreatment of corn stover. Bioresour Technol 101:5941–5951

    Article  CAS  PubMed  Google Scholar 

  • Rahman PKSM, Gakpe E (2008) Production, characterization and applications of biosurfactants-review. Biotechnol 7:360–370. doi:10.3923/biotech.2008.360.370

    Article  CAS  Google Scholar 

  • Rawat R, Srivastava N, Chadha BS, Oberoi HS (2014) Generating fermentable sugars from rice straw using functionally active cellulolytic enzymes from Aspergillus niger HO. Energ Fuels 28:5067–5075. doi:10.1021/ef500891g

    Article  CAS  Google Scholar 

  • Reddy AS, Chen CY, Baker SC, Chen CC, Jean JS, Fan CW, Chen HR, Wang JC (2009) Synthesis of silver nanoparticles using surfactin: a biosurfactant stabilizing agent. Mater Lett 63:1227–1230

    Article  CAS  Google Scholar 

  • Reis RS, Pacheco GJ, Pereira AG, Freire DMG (2013) Biosurfactants: production and applications. Chapter 2 in biodegradation-life of science, pp 31–63. http://dx.doi.org/10.5772/56144

    Google Scholar 

  • Rosa Estela QCE, Luis FMJ (2013) Hydrolysis of biomass mediated by cellulases for the production of sugars. In: Chandel AK, da- Silva SS (eds) Sustainable degradation of lignocellulosic biomass-techniques, applications and commercialization. Rijeka, Croatia, pp 119–155. doi:10.5772/53719

    Chapter  Google Scholar 

  • Rosenberg E, Rubinovitz C, Legmann R, Ron EZ (1988) Purification and chemical properties of Acinetobacter calcoaceticus A2 Biodispersan. Appl Environ Microbiol 54:323–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saharan BS, Sahu RK, Sharma D (2011) A review on biosurfactants: fermentation, current developments and perspectives. Genetic Eng Biotechnol J 29:1–14

    Google Scholar 

  • Saini JK, Patel AK, Adsul M, Singhania RR (2016) Cellulase adsorption on lignin: a roadblock for economic hydrolysis of biomass. Renew Energy 98:29–42

    Article  CAS  Google Scholar 

  • Sajjadi S, Jahanzad F, Yianneskis M, Brooks BW (2003) Phase inversion in abnormal O/W/O emulsions: effect of surfactant hydrophilic−lipophilic balance. Ind Eng Chem Res 42(15):3571–3577. doi:10.1021/ie021044e

    Article  CAS  Google Scholar 

  • Salager JL (2002) Surfactants: types and uses. Laboratory of formulation, interfaces rheology and processes, FIRP booklet E300:1–48

    Google Scholar 

  • Salam KA, Velasquez-Orta SB, Harvey AP (2016) Surfactant-assisted direct biodiesel production from wet Nannochloropsis oculata by in situ transesterification/reactive extraction. Biofuel Res J 9:366–371

    Article  Google Scholar 

  • Samiey B, Cheng CH, Wu J (2014) Effects of surfactants on the rate of chemical reactions. J Chem Article ID 908476:1–14. http://dx.doi.org/10.1155/2014/908476

    Google Scholar 

  • Santos DKF, Rufino RD, Luna JM, Santos VA, Salgueiro AA, Sarubbo LA (2013) Synthesis and evaluation of biosurfactant produced by Candida lipolytica using animal fat and corn steep liquor. J Pet Sci Eng 105:43–50

    Article  CAS  Google Scholar 

  • Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2016) Review: biosurfactants multifunctional biomolecules of the 21st century. Int J Mol Sci 17:401–432. doi:10.3390/ijms17030401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energ 37:19–27

    Article  CAS  Google Scholar 

  • Sawadogo A, Otoidobiga HC, Nitiema LW, Traore AS, Dianou D (2016) Optimization of hydrocarbons biodegradation by bacterial strains isolated from wastewaters in Ouagadougou, Burkina Faso: case study of SAE 40/50 used oils and diesel. J Agric Chem Environ 5:1–11. doi.org/10.4236/jacen.2016.51001

    CAS  Google Scholar 

  • Schramm LL, Stasiuk EN, Marangoni GD (2003) Surfactants and their applications. Ann Rep Prog Chem 99:30–48. doi:10.1039/b208499f

    Article  CAS  Google Scholar 

  • Sekhon BS (2013) Surfactants: pharmaceutical and medicinal aspects. J Pharma Technol Res Manage 1:11–36

    Google Scholar 

  • Sen R (2008) Biotechnology in petroleum recovery: the microbial EOR. Prog Energ Combust 34:714–724

    Article  CAS  Google Scholar 

  • Seo JY, Kumar RP, Kim B, Seo JC, Park JY, Na JG, Jeon SG, Park SB, Lee K, Oh YK (2016) Downstream integration of microalgae harvesting and cell disruption by means of cationic surfactant-decorated Fe3O4 nanoparticles. Green Chemi 18:1–9. doi:10.1039/c6gc00904b

    Article  Google Scholar 

  • Sharma R, Rawat R, Bhogal RS, Oberoi HS (2015) Multi-component thermostable cellulolytic enzyme production by Aspergillus niger HN-1 using pea pod waste: appraisal of hydrolytic potential with lignocellulosic biomass. Process Biochem 50:696–704

    Article  CAS  Google Scholar 

  • Sheng J, Vannela R, Rittmann BE (2011) Evaluation of cell-disruption effects of pulsed-electric-field treatment of Synechocystis PCC 6803. J Env Sci Technol 8(8):3795–3802

    Article  CAS  Google Scholar 

  • Shete AM, Wadhawa G, Banat IM, Chopade BA (2006) Mapping of patents on bioemulsifier and biosurfactant: a review. J Scient Indus Res 65:91–115

    Google Scholar 

  • Sifour M, Al-Jilawi MH, Aziz GM (2007) Emulsification properties of biosurfactant produced from Pseudomonas aeruginosa RB 28. Pak J Biol Sci 10:1331–1335

    Article  CAS  PubMed  Google Scholar 

  • Silva RC, Almeida DG, Rufino RD, Luna JM, Santos VA, Sarubbo LA (2014) Applications of biosurfactants in the petroleum industry and the remediation of oil spills. Int J Mol Sci 15:12523–12542

    Article  PubMed Central  CAS  Google Scholar 

  • Singh P, Cameotra SS (2004) Enhancement of metal bioremediation by use of microbial surfactants. Biochem Biophy Res Commun 319:291–297

    Article  CAS  Google Scholar 

  • Sipos B, Szilagyi M, Sebestyen Z, Perazzini R, Dienes D, Jakab E, Crestini C, Reczey K (2011) Mechanism of the positive effect of poly(ethylene glycol) addition in enzymatic hydrolysis of steam pretreated lignocelluloses. C R Biol 334:812–823

    Article  CAS  PubMed  Google Scholar 

  • Soni SK, Batra N, Bansal N, Soni R (2010) Bioconversion of sugarcane bagasse into second generation bioethanol after enzymatic hydrolysis with-in house produced cellulases from Aspergillus sp. S4B2F. Bioresources 5(2):741–758

    CAS  Google Scholar 

  • Srivastava N, Rawat R, Sharma R, Oberoi HS, Srivastava M, Singh J (2014) Effect of nickel–cobaltite nanoparticles on production and thermostability of cellulases from newly isolated thermotolerant Aspergillus fumigatus NS (class: Eurotiomycetes). Appl Biochem Biotechnol 174:1092–1103. doi:10.1007/s12010-014-0940-0

    Article  CAS  PubMed  Google Scholar 

  • Stevens CE (1969) In Kirk-Othmer encyclopedia of chemical technology, vol 19, 2nd edn. Wiley, New York, pp 507–593

    Google Scholar 

  • Suthar H, Hingurao K, Desai A, Nerurkar A (2008) Evaluation of bioemulsifier mediated microbial oil recovery using sand pack column. J Microbiol Methods 75:225–230

    Article  CAS  PubMed  Google Scholar 

  • Teichmann B, Linne U, Hewald S (2007) A biosynthetic gene cluster for a secreted cellobiose lipid with antifungal activity from Ustilago maydis. Mol Microbiol 66:525–533

    Article  CAS  PubMed  Google Scholar 

  • Toren A, Navon-Venezia S, Ron EZ, Rosenberg E (2001) Emulsifying activity of purified alas an proteins from Acinetobacter radioresistens. Appl Environ Microbiol 67:110–1106

    Article  Google Scholar 

  • Transparency Market Research (2014) Microbial biosurfactants market (rhamnolipids, sophorolipids, mannosylerythritol lipids for household detergents, industrial & institutional cleaners, personal care, oilfield chemicals, agricultural chemicals, food processing, textile and other applications – global industry analysis, size, share, growth, trends and forecast, 2014–2020. Available at: www.transparencymarketresearch.com/microbial-biosurfactants-market.html

  • Ulloa G, Coutens C, Sánchez M, Jineiro J, Fábregas J, Deive FJ, Rodríguez A, Nuneza MJ (2012) On the double role of surfactants as microalga cell lysis agents and antioxidants extractants. Green Chem 14:1044–1051

    Article  CAS  Google Scholar 

  • Urum K, Pekdemir T (2004) Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere 57:1139–1150

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Mochidzuki K, Kobayashi S (2013) Effect of bovine serum albumin (BSA) on enzymatic cellulose hydrolysis. Appl Biochem Biotechnol 170:541–551. doi:10.1007/s12010-013-0208-0

    Article  CAS  PubMed  Google Scholar 

  • Wright M, Brown R (2007) Comparative economics of biorefineries based on the biochemical and thermochemical platforms. Biofuels Bioprod Biorefin 1:49–56

    Article  CAS  Google Scholar 

  • Xin L, Hong-ying H, Yu-ping Z (2011) Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresour Technol 102:3098–3102

    Article  CAS  Google Scholar 

  • Yakimov M, Amro M, Bock M (1997) The potential of Bacillus licheniformis strains for in situ enhanced oil recovery. J Pet Sci Eng 18:147–160

    Article  CAS  Google Scholar 

  • Yan S, Li J, Chen X, Wu J, Wang P, Ye J, Yao J (2011) Enzymatical hydrolysis of food waste and ethanol production from the hydrolysate. Renew Energ 36:1259–1265

    Article  CAS  Google Scholar 

  • Yan S, Chen X, Wu J, Wang P (2013) Pilot scale production of fuel ethanol from concentrated food waste hydrolysates using Saccharomyces cerevisiae H058. Bioprocess Biosyst Eng 36:937–946

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Lee JH, Yoo HY, Shin HY, Thapa LP, Park C, Kim SW (2014) Production of bioethanol and biodiesel using instant noodle waste. Bioprocess Biosyst Eng. doi:10.1007/s00449-014-1135-3

    Article  CAS  PubMed  Google Scholar 

  • Yernazarova A, Kayirmanova G, Baubekova A, Zhubanova A (2016) Chapter 5: Microbial enhanced oil recovery. “chemical enhanced oil recovery (cEOR) – a practical overview”,. Ed. Laura RZ, InTech, Rijeka ISBN 978-953-51-2701-7, doi: 10.5772/64805

    Chapter  Google Scholar 

  • Ying GG (2006) Fate, behavior and effects of surfactants and their degradation products in the environment. Environ Int 32:417–431

    Article  CAS  PubMed  Google Scholar 

  • Yoon SH, Robyt JF (2005) Activation and stabilization of 10 starch-degrading enzymes by Triton X-100, polyethylene glycols, and polyvinyl alcohols. Enzyme Microb Technol 37:556–562

    Article  CAS  Google Scholar 

  • Zeng Y, Zhao S, Yang S, Ding SY (2014) Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels. Curr Opin Biotechnol 27:38–45

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Donaldson H, Ma X (2012) Advancements and future directions in enzyme technology for biomass conversion. Biotechnol Adv 30(4):913–919

    Article  CAS  PubMed  Google Scholar 

  • Zosim Z, Gutnick DL, Rosenberg E (1982) Properties of hydrocarbon-in-water emulsions stabilized by Acinetobacter RAG-1 emulsan. Biotechnol Bioeng 24:281–292

    Article  CAS  PubMed  Google Scholar 

  • Zulianello L, Canard C, Köhler T, Caille D, Lacroix JS, Meda P (2006) Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosa. Infect Immun 74:3134–3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harinder Singh Oberoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, R., Oberoi, H.S. (2017). Biosurfactant-Aided Bioprocessing: Industrial Applications and Environmental Impact. In: Shukla, P. (eds) Recent advances in Applied Microbiology . Springer, Singapore. https://doi.org/10.1007/978-981-10-5275-0_3

Download citation

Publish with us

Policies and ethics