Skip to main content

Immobilization of A. oryzae β-galactosidase on Silica Nanoparticles: Development of an Effective Biosensor for Determination of Lactose in Milk Whey

  • Chapter
  • First Online:
Recent advances in Applied Microbiology

Abstract

The present study demonstrates the covalent immobilization of β-galactosidase on functionalized silica nanoparticles for its application in lactose and whey hydrolysis. Under optimal conditions of 1% (w/v) glutaraldehyde, protein to carrier ratio of 66.6 mg/g and pH 7.0, a very high immobilization efficiency of 94% was obtained. The pH and temperature optimum of the immobilized β-gal was 4.5 and 50 °C with ONPG as substrate. Compared to the soluble enzyme, covalently bonded nanosilica-β-gal conjugate exhibited greater stability against inhibition by galactose and a higher thermal stability at 40 °C with a t 1/2 of 15.8 h. A lower K m and increased catalytic efficiency indicated higher substrate affinity and reactivity upon enzyme attachment to nanoparticle surface. Reusability of the immobilized preparation extended up to 14 cycles. The immobilized preparation effectively hydrolyzed whey and lactose to soluble simple sugars with 50% of hydrolysis occurring in 6 h. The rate of lactose and whey hydrolysis by immobilized β-gal was 1.5 and 2.5 times higher than that for the free enzyme, respectively. Immobilized β-gal preparation may be advantageously and commercially explored for effective bioremediation of dairy waste, devising biosensors or analytical tools for food and environmental technology or conversion of whey into value-added products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Albayrak N, Yang ST (2002) Production of galacto-oligosaccharides from lactose by Aspergillus oryzae β-galactosidase immobilized on cotton cloth. Biotechnol Bioeng 77:8–19

    Article  CAS  Google Scholar 

  • Ansari SA, Husain Q (2010) Lactose hydrolysis by β-galactosidase immobilized on concanavalin a-cellulose in batch and continuous mode. J Mol Catal B Enzym 6:68–74

    Article  Google Scholar 

  • Ansari SA, Husain Q (2011) Immobilization of Kluyveromyces lactis β galactosidase on concanavalin A layered aluminium oxide nanoparticles—its future aspects in biosensor applications. J Mol Catal B Enzym 70:119–126

    Article  CAS  Google Scholar 

  • Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30:512–523

    Article  CAS  Google Scholar 

  • Ansari SA, Satar R, Alam F, Alqahtani MH, Chaudhary AG, Naseer MI, Karim S, Sheikh IA (2012) Cost effective surface functionalization of silver nanoparticles for high yield immobilization of Aspergillus oryzae β-galactosidase and its application in lactose hydrolysis. Process Biochem 47:2427–2433

    Article  CAS  Google Scholar 

  • Ansari SA, Satar R, Zaidi SK, Naseer MI, Karim S, Alqahtani MH, Rasool M (2015) Nanodiamonds as an effective and novel matrix for immobilizing β galactosidase. Food Bioprod Process 95:298–303

    Article  CAS  Google Scholar 

  • Baldasso C, Barros TC, Tessaro IC (2011) Concentration and purification of whey proteins by ultrafiltration. Desalination 278:381–386

    Article  CAS  Google Scholar 

  • Becerra M, Gonzalez Siso MI (1996) Yeast β-galactosidase in solid-state fermentation. Enzyme Microb Technol 19:39–44

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cabuk B, Tari C, Harsa ST (2014) β-Galactosidase immobilization on chitosan-hydroxyapatite complex: effects of immobilization conditions. J Nutr Health Food Eng 1:00004

    Google Scholar 

  • Cardelle-Cobas A, Olano A, Irazoqui G, Giacomini C, Batista-Viera F, Corzo N, Corzo-Martínez M (2016) Synthesis of oligosaccharides derived from lactulose (OsLu) using soluble and immobilized Aspergillus oryzae β-Galactosidase. Front Bioeng Biotechnol 4:21. doi:10.3389/fbioe.2016.00021

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen SC, Duan KJ (2015) Production of galactooligosaccharides using β-galactosidase immobilized on chitosan-coated magnetic nanoparticles with Tris (hydroxymethyl) phosphine as an optional coupling agent. Int J Mol Sci 16:12499–12512

    Article  CAS  Google Scholar 

  • Colinas BR, Arrojo LF, Ballesteros AO, Plou FJ (2014) Galactooligosaccharides formation during enzymatic hydrolysis of lactose: towards a prebiotic-enriched milk. Food Chem 145:388–394

    Article  Google Scholar 

  • Craven GR, Steers E Jr, Anfinsen CB (1965) Purification, composition and molecular weight of the β-galactosidase of Escherichia coli K12. J Biol Chem 240:2469–2477

    Google Scholar 

  • Crescimbeni MC, Nolan V, Clop PD, Marin GN, Perillo A (2010) Activity modulation and reusability of β-D-galactosidase confined in sol-gel derived porous silicate glass. Coll Surf B 76:387–396

    Article  CAS  Google Scholar 

  • Elnashar MM, Awad GE, Hassan ME, Eldin MSM, Haroun BM, El-Diwany AI (2014) Optimal immobilization of β-galactosidase onto κ-carrageenan gel beads using response surface methodology and its applications. Sci World J. doi:10.1155/2014/571682

    Article  CAS  Google Scholar 

  • Facin BR, Moret B, Baretta D, Belfiore LA, Paulino AT (2015) Immobilization and controlled release of β-galactosidase from chitosan-grafted hydrogels. Food Chem 179:44–51

    Article  CAS  Google Scholar 

  • Gaur R, Pant H, Jain R, Khare SK (2006) Galacto-oligosaccharide synthesis by immobilized Aspergillus oryzae β-galactosidase. Food Chem 97:426–430

    Article  CAS  Google Scholar 

  • Hartmann M, Kostrov X (2013) Immobilization of enzymes on porous silicas–benefits and challenges. Chem Soc Rev 42:6277–6289

    Article  CAS  Google Scholar 

  • Heyman MB (2006) Lactose intolerance in infants, children, and adolescents. Pediatrics 118:1279–1286

    Article  Google Scholar 

  • Husain Q (2010) β-Galactosidases and their potential applications: a review. Crit Rev Biotechnol 30:41–62

    Article  CAS  Google Scholar 

  • Husain Q, Ansari SA, Alam F, Azam A (2011) Immobilization of Aspergillus oryzae β-galactosidase on zinc oxide nanoparticles via simple adsorption mechanism. J Biol Macromol 49:37–43

    Article  CAS  Google Scholar 

  • Jin L, Li Y, Ren XH, Lee JH (2015) Immobilization of lactase onto various polymer nanofibers for enzyme stabilization and recycling. J Microbiol Biotechnol 25:1291–1298

    Article  CAS  Google Scholar 

  • Klein MP, Nunes MR, Rodrigues RC, Benvenutti EV, Costa TM, Hertz PF, Ninow JL (2012) Effect of the support size on the properties of β-galactosidase immobilized on chitosan: advantages and disadvantages of macro and nanoparticles. Biomacromolecules 13:2456–2464

    Article  CAS  Google Scholar 

  • Klein MP, Fallavena LP, Schöffer JDN, Ayub MA, Rodrigues RC, Ninow JL, Hertz PF (2013) High stability of immobilized β-D-galactosidase for lactose hydrolysis and galactooligosaccharides synthesis. Carbohydr Polym 95:465–470

    Article  CAS  Google Scholar 

  • Li L, Li G, Cao LC, Ren GH, Kong W, Wang SD, Guo GS, Liu Y (2015) Characterization of the cross-linked enzyme aggregates of a novel β-galactosidase, a potential catalyst for the synthesis of galacto-oligosaccharides. J Agric Food Chem 63:894–901

    Article  CAS  Google Scholar 

  • Maischberger T, Nguyen TH, Sukyai P, Kittl R, Riva S, Ludwig R, Haltrich D (2008) Production of lactose-free galacto-oligosaccharide mixtures: comparison of two cellobiose dehydrogenases for the selective oxidation of lactose to lactobionic acid. Carbohydr Res 343:2140–2147

    Article  CAS  Google Scholar 

  • Makowski K, Białkowska A, Szczęsna-Antczak M, Kalinowska H, Kur J, Cieśliński H, Turkiewicz M (2007) Immobilized preparation of cold-adapted and halotolerant Antarctic β-galactosidase as a highly stable catalyst in lactose hydrolysis. FEMS Microbiol Ecol 59:535–542

    Article  CAS  Google Scholar 

  • Marín-Navarro J, Talens-Perales D, Oude-Vrielink A, Polaina J (2014) Immobilization of thermostable β-galactosidase on epoxy support and its use for lactose hydrolysis and galactooligosaccharides biosynthesis. World J Microbiol Biotechnol 30:989–998

    Article  Google Scholar 

  • Misson M, Dai S, Jin B, Chen BH, Zhang H (2016) Manipulation of nanofiber-based β-galactosidase nanoenvironment for enhancement of galacto-oligosaccharide production. J Biotechnol 222:56–64

    Article  CAS  Google Scholar 

  • Mustafa L, Alsaed AK, A-Domi H (2014) Drying of sweet whey using drum dryer technique and utilization of the produced powder in French type bread and butter cookies. Pak J Biol Sci 17:812–820

    Article  CAS  Google Scholar 

  • Oliveira C, Guimaraes PM, Domingues L (2011) Recombinant microbial systems for improved β-galactosidase production and biotechnological applications. Biotechnol Adv 29:600–609

    Article  CAS  Google Scholar 

  • Pan C, Hu B, Li W, Sun YI, Ye H, Zeng X (2009) Novel and efficient method for immobilization and stabilization of β-D-galactosidase by covalent attachment onto magnetic Fe3O4–chitosan nanoparticles. J Mol Catal B Enzym 61:208–215

    Article  CAS  Google Scholar 

  • Rosenberg ZMM (2006) Current trends of β-galactosidase application in food technology. J Food Nutr Res 45:47–54

    Google Scholar 

  • Roy I, Gupta MN (2003) Lactose hydrolysis by Lactozym™ immobilized on cellulose beads in batch and fluidized bed modes. Process Biochem 39:325–332

    Article  CAS  Google Scholar 

  • Selvarajan E, Mohanasrinivasan V, Devi CS, Doss CG (2015) Immobilization of β-galactosidase from Lactobacillus plantarum HF571129 on ZnO nanoparticles: characterization and lactose hydrolysis. Bioprocess Biosyst Eng 38:1655–1669

    Article  CAS  Google Scholar 

  • Shukla TP, Wierzbicki LE (1975) Beta-galactosidase technology: a solution to the lactose problem. Crit Rev Food Sci Nutr 5:325–356

    CAS  Google Scholar 

  • Singh RK, Zhang YW, Jeya M, Lee JK (2011) Covalent immobilization of β-1, 4-glucosidase from Agaricus arvensis onto functionalized silicon oxide nanoparticles. Appl Microbiol Biotechnol 89:337–344

    Article  CAS  Google Scholar 

  • Sinha R, Khare SK (2015) Immobilization of halophilic Bacillus sp. EMB9 protease on functionalized silica nanoparticles and application in whey protein hydrolysis. Bioprocess Biosyst Eng 38:739–748

    Article  CAS  Google Scholar 

  • Subbiah R, Veerapandian M, Yun KS (2010) Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr Med Chem 17:4559–4577

    Article  CAS  Google Scholar 

  • Tsakali E, Petrotos K, D’Allessandro A, Goulas P (2010) A review on whey composition and the methods used for its utilization for food and pharmaceutical products. In: 6th International conference on simulation and modelling in the food and Bio-Industry, Braganca, Portugal

    Google Scholar 

  • Vasileva N, Ivanov Y, Damyanova S, Kostova I, Godjevargova T (2016) Hydrolysis of whey lactose by immobilized β-galactosidase in a bioreactor with a spirally wound membrane. Int J Biol Macromol 82:339–346

    Article  CAS  Google Scholar 

  • Verma ML, Barrow CJ, Kennedy JF, Puri M (2012) Immobilization of β-D-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: characterization and lactose hydrolysis. Int J Biol Macromol 50:432–437

    Article  CAS  Google Scholar 

  • Wentworth DS, Skonberg D, Donahue DW, Ghanem A (2004) Application of chitosan-entrapped β-galactosidase in a packed-bed reactor system. J Appl Polym Sci 91:1294–1299

    Article  CAS  Google Scholar 

  • Wu Z, Wang Z, Guan B, Wang X, Zhang Y, Xiao Y, Zhi B, Liu Y, Li Z, Huo Q (2013) Improving the properties of β-galactosidase from Aspergillus oryzae via encapsulation in aggregated silica nanoparticles. New J Chem 37:3793–3797

    Article  CAS  Google Scholar 

  • Zhang S, Gao S, Gao G (2010) Immobilization of β-galactosidase onto magnetic beads. Appl Biochem Biotechnol 160:1386–1393

    Article  CAS  Google Scholar 

  • Zhang YW, Tiwari MK, Jeya M, Lee JK (2011) Covalent immobilization of recombinant Rhizobium etli CFN42 xylitol dehydrogenase onto modified silica nanoparticles. Appl Microbial Biotechnol 90:499–507

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support provided by the Department of Biotechnology (Government of India) is gratefully acknowledged. Author Dr. Rajeshwari Sinha is grateful to the Council of Scientific and Industrial Research (CSIR) for research fellowship.

Conflict of Interest

The authors declare that there is no conflict of interest.

Author Contributions

Conceived and designed the experiments: AG, RS, and SKK. Performed the experiments: AG. Analyzed the data: AG, RS, and SKK. Contributed to the writing of the manuscript: AG, RS, and SKK. All authors have approved of the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil K. Khare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goel, A., Sinha, R., Khare, S.K. (2017). Immobilization of A. oryzae β-galactosidase on Silica Nanoparticles: Development of an Effective Biosensor for Determination of Lactose in Milk Whey. In: Shukla, P. (eds) Recent advances in Applied Microbiology . Springer, Singapore. https://doi.org/10.1007/978-981-10-5275-0_1

Download citation

Publish with us

Policies and ethics