Skip to main content

Monolithically Integrated Semiconductor Lasers

  • Chapter
  • First Online:
Single Frequency Semiconductor Lasers

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 9))

  • 1555 Accesses

Abstract

The ordinary LD with an F-P cavity composed of cleaved facets works often in multiple longitudinal modes; and the mode frequency is susceptible to pump levels and environmental conditions. To make it working in a single longitudinal mode, especially in case of high frequency modulations, it is necessary to insert a wavelength selective element in the cavity. Three monolithically integrated semiconductor lasers with excellent characteristics of single longitudinal mode operation are introduced in this Chapter: the distributed feedback (DFB) laser , the distributed Bragg reflector (DBR) laser, and the vertical cavity surface emitting laser (VCSEL) in three sections, respectively. All of them are based on the principle of Bragg refraction, but have different characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kogelnik H, Shank CV (1971) Stimulated emission in a periodic structure. Appl Phys Lett 18:152–154

    Article  ADS  Google Scholar 

  2. Kogelnik H, Shank CV (1972) Coupled-wave theory of distributed feedback lasers. J Appl Phys 43(5):2327–2335

    Article  ADS  Google Scholar 

  3. Scifres DR, Burnham RD, Streifer W (1974) Distributed-feedback single heterojunction GaAs diode laser. Appl Phys Lett 25:203–206

    Article  ADS  Google Scholar 

  4. Ghafouri-Shiraz H, Lo BSK (1996) Distributed feedback laser diodes. Wiley

    Google Scholar 

  5. Yariv A (1997) Optical electronics in modern communications. Chapter 16. 5th edn, Oxford University Press, Inc

    Google Scholar 

  6. Carroll JE, Plumb D, Whiteaway J (1998) Distributed feedback semiconductor lasers. Institution of Electrical Engineers

    Google Scholar 

  7. Yariv A (1973) Coupled-mode theory for guided-wave optics. IEEE J Quantum Electron 9(9):919–933

    Article  ADS  Google Scholar 

  8. Haus HA, Shank CV (1976) Antisymmetric taper of distributed feedback lasers. IEEE J Quantum Electron 12(9):532–539

    Article  ADS  Google Scholar 

  9. Utaka K, Akiba S, Sakai K et al (1984) Analysis of quarter-wave-shifted DFB laser. Electron Lett 20(8):326–327

    Article  Google Scholar 

  10. Kojima K, Kyuma K, Nakayama T (1985) Analysis of the spectral linewidth of distributed feedback laser diodes. J Lightwave Technol 3(5):1048–1055

    Article  ADS  Google Scholar 

  11. Vankwikelberge P, Buytaert F, Franchois A et al (1989) Analysis of the carrier-induced FM response of DFB lasers: theoretical and experimental case studies. IEEE J Quantum Electron 25(11):2239–2254

    Article  ADS  Google Scholar 

  12. Hirayama Y, Morinaga M, Onomura M et al (1992) High-speed 1.5 μm compressively strained multi-quantum well self-aligned constricted mesa DFB lasers. J Lightwave Technol 10(9):1272–1280

    Google Scholar 

  13. Wu M, Lou Y, Wang S (1988) Linewidth broadening due to longitudinal spatial hole burning in a long distributed feedback laser. Appl Phys Lett 52(14):1119–1121

    Article  ADS  Google Scholar 

  14. Kimura T, Sugimura A (1987) Linewidth reduction by coupled phase-shift distributed-feedback lasers. Electron Lett 23(19):1014–1015

    Article  Google Scholar 

  15. Rabinovich WS, Feldman BJ (1989) Spatial hole burning effects in distributed feedback lasers. IEEE J Quantum Electron 25(1):20–30

    Article  ADS  Google Scholar 

  16. Nakano Y, Tada K (1998) Analysis, design, and fabrication of GaAlAs/GaAs DFB lasers with modulated stripe width structure for complete single longitudinal mode oscillation. IEEE J Quantum Electron 24(10):2017–2033

    Article  ADS  Google Scholar 

  17. Agrawal GP, Bobeck AH (1988) Modeling of distributed feedback semiconductor lasers with axially-varying parameters. IEEE J Quantum Electron 24(12):2407–2414

    Article  ADS  Google Scholar 

  18. Rennon S, Bach L, Reithmaier JP et al (2001) Complex coupled distributed-feedback and Bragg-reflector lasers for monolithic device integration based on focused-ion-beam technology. IEEE J Sel Top Quantum Electron 7(2):306–311

    Article  Google Scholar 

  19. Zhang LM, Yu SF, Nowell MC et al (1994) Dynamic analysis of radiation and side-mode suppression in a second-order DFB laser using time-domain large-signal traveling wave model. IEEE J Quantum Electron 30(6):1389–1395

    Article  ADS  Google Scholar 

  20. Yu SF (1996) A quasi-three-dimensional large-signal dynamic model of distributed feedback lasers. IEEE J Quantum Electron 32(3):424–432

    Article  ADS  Google Scholar 

  21. Luo Y, Nakano Y, Tada K et al (1991) Fabrication and characteristics of gain-coupled distributed semiconductor lasers with a corrugated active layer. IEEE J Quantum Electron 27(6):1724–1731

    Article  ADS  Google Scholar 

  22. Broberg B, Nilsson S (1988) Widely tunable active Bragg reflector integrated lasers in InGaAsP/InP. Appl Phys Lett 52(16):1285–1287

    Article  ADS  Google Scholar 

  23. Coldren LA, Fish GA, Akulova Y et al (2004) Tunable semiconductor lasers: a tutorial. J Lightwave Technol 22(1):193–202

    Article  ADS  Google Scholar 

  24. Todt R, Jacke T, Meyer R et al (2004) Wide wavelength tuning of sampled grating tunable twin-guide laser diodes. Electron Lett 40(23):1491–1492

    Article  Google Scholar 

  25. Numai T (1992) 1.5 μm phase-controlled distributed feedback wavelength tunable optical filter. IEEE J Quantum Electron 28(6):1508–1512

    Article  ADS  Google Scholar 

  26. Numai T (1992) 1.5 μm phase-shift-controlled distributed feedback wavelength tunable optical filter. IEEE J Quantum Electron 28(6):1513–1519

    Article  ADS  Google Scholar 

  27. Fang Z, Chin K, Qu R et al (2012) Fundamentals of optical fiber sensors. Wiley

    Google Scholar 

  28. Tohmori Y, Yoshikuni Y, Ishii H et al (1993) Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers. IEEE J Quantum Electron 29(6):1817–1823

    Article  ADS  Google Scholar 

  29. Kano F, Ishii H, Tohmori Y et al (1993) Characteristics of super structure grating (SSG) DBR lasers under broad range wavelength tuning. IEEE Photonics Technol Lett 5(6):611–613

    Article  ADS  Google Scholar 

  30. Tohmori Y, Yoshikuni Y, Ishii H (1993) Over 100 nm wavelength tuning in superstructure grating (SSG) DBR lasers. Electron Lett 29(4):352–354

    Article  Google Scholar 

  31. Morthier G, Moeyersoon B, Baets R (2001) A λ/4-shifted sampled or superstructure grating widely tunable twin-guide laser. IEEE Photonics Technol Lett 13(10):1052–1054

    Article  ADS  Google Scholar 

  32. Ward AJ, Robbins DJ, Busico G et al (2005) Widely tunable DS-DBR laser with monolithically integrated SOA: design and performance. IEEE J Sel Top in Quantum Electron 11(1):149–152

    Article  Google Scholar 

  33. Ishii H, Tanobe H, Kano F et al (1996) Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers. IEEE J Quantum Electron 32(3):433–441

    Article  ADS  Google Scholar 

  34. Akulova YA, Fish GA, Koh P et al (2002) Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitter. IEEE J Sel Top Quantum Electron 8(6):1349–1357

    Article  Google Scholar 

  35. Phelan R, Guo W, Lu Q et al (2008) A novel two-section tunable discrete mode Fabry-Pérot laser exhibiting nanosecond wavelength switching. IEEE J Quantum Electron 44(4):331–337

    Article  ADS  Google Scholar 

  36. Fricke J, Bugge F, Ginolas A et al (2010) High-power 980-nm broad-area lasers spectrally stabilized by surface Bragg gratings. IEEE Photonics Technol Lett 22(5):284–286

    Article  ADS  Google Scholar 

  37. Jewell JL, Harbison JP, Scherer A et al (1991) Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization. IEEE J Quantum Electron 27(6):1332–1345

    Article  ADS  Google Scholar 

  38. Geels RS, Corzine SW, Coldren LA (1991) InGaAs vertical-cavity surface-emitting lasers. IEEE J Quantum Electron 27(6):1359–1367

    Google Scholar 

  39. Hasnain G, Tai K, Yang L et al (1991) Performance of gain-guided surface emitting lasers with semiconductor distributed Bragg reflectors. IEEE J Quantum Electron 27(6):1377–1385

    Article  ADS  Google Scholar 

  40. Grabherr M, King R, Jäger R et.al. (2008) Volume production of polarization controlled single-mode VCSELs. Proceeding SPIE 6908:690803(1–9)

    Google Scholar 

  41. Seurin J, Xu G, Khalfin V et.al. (2009) Progress in high-power high-efficiency VCSEL arrays. Proceeding SPIE 7229:722903(1–11)

    Google Scholar 

  42. Jayaraman J, Jiang J, Potsaid B et al (2012) Design and performance of broadly tunable, narrow line-width, high repetition rate 1310 nm VCSELs for swept source optical coherence tomography. Proc SPIE 8276:82760D(1–11)

    Google Scholar 

  43. Lee TP (ed) (1995) Current trends in vertical cavity surface emitting lasers. World Scientific Publishing Co., Singapore

    Google Scholar 

  44. Li HE, Iga K (ed) (2003) Vertical-cavity Surface-emitting laser devices. Springer

    Google Scholar 

  45. Yu SF (2003) Analysis and design of vertical-cavity surface-emitting lasers. Wiley

    Google Scholar 

  46. Morgan RA (1997) Vertical-cavity surface-emitting lasers: present and future. Proc SPIE 3003:14–26

    Article  ADS  Google Scholar 

  47. Chow WW, Choquette KD, Crawford MH et al (1997) Design, fabrication, and performance of infrared and visible vertical-cavity surface-emitting lasers. IEEE J Quantum Electron 33(10):1810–1824

    Article  ADS  Google Scholar 

  48. Michalzik R, Grabherr M, Jäger R et al (1998) Progress in high power VCSELs and arrays. Proc SPIE 3419:187–195

    ADS  Google Scholar 

  49. Born M, Wolf E (1999) Principles of optics. Seventh edn. Cambridge University Press

    Google Scholar 

  50. Yeh HJ, Smith JS (1994) Integration of GaAs vertical cavity surface emitting laser on Si by substrate removal. Appl Phys Lett 64(12):1466–1468

    Article  ADS  Google Scholar 

  51. Babi DI, Dudley JJ, Streubel K et al (1995) Double fused 1.52 m vertical cavity lasers. Appl Phys Lett 66(9):1030–1032

    Article  ADS  Google Scholar 

  52. Iga K (2000) Surface-emitting laser—its birth and generation of new optoelectronics field. IEEE J Sel Top Quantum Electron 6(6):1201–1205

    Article  Google Scholar 

  53. Lu TC, Kao CC, Kuo HC et al (2008) CW lasing of current injection blue GaN-based vertical cavity surface emitting laser. Appl Phys Lett 92(14):141102(1–3)

    Google Scholar 

  54. Alford WJ, Raymond TD, Allerman AA (2002) High power and good beam quality at 980 nm from a vertical external-cavity surface-emitting laser. J Opt Soc of Am B 19(4):663–666

    Article  ADS  Google Scholar 

  55. Mereuta A, Iakovlev V, Caliman A et al (2008) In(Al)GaAs-AlGaAs wafer fused VCSELs emitting at 2 μm wavelength. IEEE Photonics Technol Lett 20(1):24–26

    Article  ADS  Google Scholar 

  56. Michalzik R, Ebeling KJ (1993) Modeling and design of proton-implanted ultralow-threshold vertical-cavity laser diodes. IEEE J Quantum Electron 29(6):1963–1973

    Article  ADS  Google Scholar 

  57. Yang GM, MacDougal MH, Dapkus PD (1995) Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation. Electron Lett 31(11):886–888

    Article  Google Scholar 

  58. Huffaker DL, Deppe DG (1997) Improved performance of oxide-confined vertical-cavity surface-emitting lasers using a tunnel injection active region. Appl Phys Lett 71(11):1449–1451

    Article  ADS  Google Scholar 

  59. Yoshikawa H, Kosaka H, Kurihara K et al Complete polarization control of 8 × 8 vertical cavity surface emitting laser matrix arrays. Appl Phys Lett 66(8):908–910

    Google Scholar 

  60. Verschuuren MA, Gerlach P, van Sprang HA et al (2011) Improved performance of polarization-stable VCSELs by monolithic sub-wavelength gratings produced by soft nano-imprint lithography. Nanotechnol 22:505201(1–9)

    Google Scholar 

  61. Miah MJ, Al-Samaneh A, Kern A et al (2013) Fabrication and characterization of low-threshold polarization-stable VCSELs for Cs-based miniaturized atomic clocks. IEEE J Sel Top in Quantum Electron 19(4):1701410(1–10)

    Google Scholar 

  62. Chou SY, Schablitsky S, Zhuang L (1997) Subwavelength transmission gratings and their applications in VCSELs. Proc SPIE 3290:73–81

    Article  ADS  Google Scholar 

  63. Debernardi P, Ostermann JM, Feneberg M et al (2005) Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study. IEEE J Sel Top Quantum Electron 11(1):107–116

    Article  Google Scholar 

  64. Chang-Hasnain CJ (2000) Tunable VCSEL. IEEE J Sel Top Quantum Electron 6(6):978–987

    Article  Google Scholar 

  65. Huang MCY, Zhou Y, Chang-Hasnain CJ (2008) A nanoelectromechanical tunable laser. Nat Photonics 2:180–184

    Article  ADS  Google Scholar 

  66. Gierl C, Gruendl T, Debernardi P et al (2011) Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning. Opt Express 19(18):17336–17343

    Google Scholar 

  67. Chang YC, Wang CS, Coldren LA (2007) High-efficiency, high-speed VCSELs with 35 Gbit/s error-free operation. Electron Lett 43(19):1022–1023

    Article  Google Scholar 

  68. Imai S, Takaki K, Kamiya S et al (2011) Recorded low power dissipation in highly reliable 1060-nm VCSELs for “green” optical interconnection. IEEE J Sel Top Quantum Electron 17(6):1614–1620

    Article  Google Scholar 

  69. Moser P, Hofmann W, Wolf P et al (2011) 81 fJ/bit energy-to-data ratio of 850 nm vertical-cavity surface-emitting lasers for optical interconnects. Appl Phys Lett 98:231106(1–3)

    Google Scholar 

  70. Moser P, Lott JA, Wolf P et al (2012) 99 fJ/(bit km) energy to data-distance ratio at 17 Gb/s across 1 km of multimode optical fiber with 850-nm single-mode VCSELs. IEEE Photonics Technol Lett 24(1):19–21

    Article  ADS  Google Scholar 

  71. Osinski M, Nakwaski W (1995) Thermal effects in vertical-cavity surface-emitting lasers. Selected paper of “Current Trends in Vertical Cavity Surface Emitting Lasers”. In: Lee TP (ed) World Scientific Publishing Co., Singapore

    Google Scholar 

  72. Mooradian A. (2001). High brightness cavity-controlled surface emitting GaInAs lasers operating at 980 nm. Proc OFC PD17–3, Anahaim, USA

    Google Scholar 

  73. Westbergh P, Gustavsson JS, Haglund A et al (2008) Large aperture 850 nm VCSELs operating at bit rates up to 25 Gbit/s. Electron Lett 44(15):907–908

    Article  Google Scholar 

  74. Al-Samaneh A, Renz S, Strodl A et al (2010) Polarization-stable single-mode VCSELs for Cs-based MEMS atomic clock applications. Proc SPIE 7702:770206(1–14)

    Google Scholar 

  75. Gustavsson J, Westbergh P, Szczerba K et al (2010) High-speed 850-nm VCSELs for 40 Gb/s transmission. Proc SPIE 7720:772002(1–11)

    Google Scholar 

  76. Mutig A, Lott JA, Blokhin SA et al (2011) Modulation characteristics of high-speed and high-temperature stable 980 nm range VCSELs operating error free at 25 Gbit/s up to 85°C. IEEE J Sel Top Quantum Electron 17(6):1568–1575

    Article  Google Scholar 

  77. Miller M, Grabherr M, Jäger R et al (2001) High-power VCSEL arrays for emission in the watt regime at room temperature. IEEE Photonics Technol Lett 13(3):173–175

    Article  ADS  Google Scholar 

  78. Tatum JA, Johnson RH, Guenter JK et al (2010) High data throughput VCSELs. Proc SPIE 7720:772004(1–6)

    Google Scholar 

  79. Karim A, Björlin S, Pipre J et al (2011) Long-wavelength vertical-cavity lasers and amplifiers. IEEE J Sel Top Quantum Electron 6(6):1244–1253

    Article  Google Scholar 

  80. Keeler GA, Geib KM, Serkland DK et al (2007) VCSEL polarization control for chip-scale atomic clocks. Sandia Report

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zujie Fang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Shanghai Jiao Tong University Press and Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Fang, Z., Cai, H., Chen, G., Qu, R. (2017). Monolithically Integrated Semiconductor Lasers. In: Single Frequency Semiconductor Lasers . Optical and Fiber Communications Reports, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-10-5257-6_4

Download citation

Publish with us

Policies and ethics