Skip to main content

Introduction

  • Chapter
  • First Online:
Book cover Single Frequency Semiconductor Lasers

Part of the book series: Optical and Fiber Communications Reports ((OFCR,volume 9))

  • 1505 Accesses

Abstract

This chapter gives a brief historical review of semiconductor laser and a brief description of the main characteristics and applications of single frequency semiconductor lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gordon J, Zeiger H, Townes CH (1955) The maser—new type of microwave amplifier, frequency standard, and spectrometer. Phys Rev 99(4):1264–1274

    Article  ADS  Google Scholar 

  2. Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187:493–494

    Article  ADS  Google Scholar 

  3. Nathan MI, Dumke WP, Burns G et al (1962) Stimulated emission of radiation from GaAs P-N junction. Appl Phys Lett 1(3):62–64

    Article  ADS  Google Scholar 

  4. Hall RN, Fenner GE, Kingsley JD et al (1962) Coherent light emission from GaAs junctions. Phys Rev Lett 9(9):366–368

    Article  ADS  Google Scholar 

  5. Bernard MGA, Duraffourg G (1961) Laser conditions in semiconductors. Phys Status Solidi 47:699–703

    Article  Google Scholar 

  6. Hayashi I, Panish MB, Foy PW (1969) A low-threshold room-temperature injection laser. IEEE J Quantum Electron 5:211

    Article  ADS  Google Scholar 

  7. Panish MB, Hayashi I, Sumski S (1970) Double-heterostructure injection lasers with room-temperature thresholds as low as 2300 A/cm2. Appl Phys Lett 16(8):326–327

    Article  ADS  Google Scholar 

  8. Kressel H, Hawrylo FZ (1970) Fabry-Perot structure AlxGa1-xAs injection lasers with room-temperature threshold current densities of 2530 A/cm2. Appl Phys Lett 17(4):169–171

    Article  ADS  Google Scholar 

  9. Kogelnik H, Shank CV (1972) Stimulated emission in a periodic structure. Appl Phys Lett 18:152–154

    Article  ADS  Google Scholar 

  10. Scifres DR, Burnham RD, Streifer W (1974) Distributed-feedback single heterojunction GaAs diode laser. Appl Phys Lett 25:203–206

    Article  ADS  Google Scholar 

  11. Holonyak N, Kolbas RM, Dupuis RD et al (1980) Quantum-well heterostructure lasers. IEEE J Quantum Electron 16(2):170–186

    Article  ADS  Google Scholar 

  12. Adams AR (2011) Strained-layer quantum-well lasers. IEEE J Sel Top Quantum Electron 17(5):1364–1373

    Article  Google Scholar 

  13. Jewell JL, Harbison JP, Scherer A et al (1991) Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization. IEEE J Quantum Electron 27(6):1332–1346

    Article  ADS  Google Scholar 

  14. Faist J, Capasso F, Sivco DL et al (1994) Quantum cascade laser. Science 264(5158):553–556

    Article  ADS  Google Scholar 

  15. Townes CH (1999) How the laser happened: adventures of a scientist. Oxford University Press, Oxford

    Google Scholar 

  16. Guo Y, Shen H (2002) The nobel prize in physics (a centenary volume). Shanghai Press of Science Popularization, Shanghai (in Chinese)

    Google Scholar 

  17. Kroemer H (1963) A proposed class of hetero-junction injection laser. Proc IEEE 51(12):1782–1783

    Article  Google Scholar 

  18. Alferov ZI (2000) The double heterostructure: concept and its applications in physics, electronics and technology. http://www.nobelprize.org/mediaplayer/index.php?id=970. Accessed 14 Nov 2016

  19. Akasaki I, Amano H, Koide Y et al (1989) Effects of AlN buffer layer on crystallographic structure and on electrical and optical properties of GaN and Ga1-xAlxN (0 < x<= 0.4) films grown on sapphire substrate by MOVPE. J Cryst Growth 98(1–2):209–219

    Article  ADS  Google Scholar 

  20. Schawlow AL, Townes CH (1958) Infrared and optical masers. Phys Rev 112:1940–1949

    Article  ADS  Google Scholar 

  21. Ip E, Lau APT, Barros DJF et al (2008) Coherent detection in optical fiber systems. Opt Express 16(2):753–791

    Google Scholar 

  22. Chu S (1998) The manipulation of neutral particles. Rev Mod Phys 70(3):685–703

    Article  ADS  MathSciNet  Google Scholar 

  23. Hänsch TW (2006) Nobel lecture: passion for precision. Rev Mod Phys 78(4):1297–1309

    Article  ADS  Google Scholar 

  24. Nash P (1996) Review of interferometric optical fibre hydrophone technology. IEEE Proc—Radar Sonar Navig 143:204–209

    Article  Google Scholar 

  25. Schawlow AL (1982) Spectroscopy in a new light. Rev Mod Phys 54(3):697–707

    Article  ADS  Google Scholar 

  26. Drever RWP, Hall JL, Kowalski FV et al (1983) Laser phase and frequency stabilization using an optical resonator. Appl Phys B 31(2):97–105

    Article  ADS  Google Scholar 

  27. Padgett M, Courtial J, Allen L (2004) Light’s orbital angular momentum. Phys Today 57(5):35–40

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zujie Fang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Shanghai Jiao Tong University Press and Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Fang, Z., Cai, H., Chen, G., Qu, R. (2017). Introduction. In: Single Frequency Semiconductor Lasers . Optical and Fiber Communications Reports, vol 9. Springer, Singapore. https://doi.org/10.1007/978-981-10-5257-6_1

Download citation

Publish with us

Policies and ethics