Skip to main content

Production of Antioxidant and Oxidant Metabolites in Tomato Plants Infected with Verticillium dahliae Under Saline Conditions

  • Chapter
  • First Online:

Abstract

The objective of this research was to study the levels of antioxidant and oxidant metabolites such as total protein, total soluble sugars, proline, peroxidase, catalase, malondialdehyde, anthocyanin and phenol contents in tomato plants (Lycopersicon esculentum Mill. cv. Ailsa Craig) inoculated with Verticillium dahliae under various NaCl concentrations (50, 100, 200 and 250 mmol l−1). V. dahliae alone resulted in increases in oxidant (malondialdehyde and phenol) and antioxidant metabolites (proline, anthocyanin and sugar) as well as in antioxidant enzymes (catalase and peroxidase). However, the pathogenic effect of V. dahliae increased with the increase of NaCl stress and resulted in depletion of antioxidant metabolites and enzymes after 150 mmol l−1 NaCl level, while oxidant levels showed an increased trend. Results suggest that V. dahliae could be able to survive under high salt stress conditions and cause combined stress that affect the resistance of the resistant cultivars and reduce crop yield.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abass MH (2016) Responses of date palm (Phoenix dactylifera L.) callus to biotic and abiotic stresses. Emir J Food Agric 28:66–74

    Article  Google Scholar 

  • Agami RA (2014) Applications of ascorbic acid or proline increase resistance to salt stress in barley seedlings. Biol Plant 58:341–347

    Article  CAS  Google Scholar 

  • Al-Sadi AM, Al-Masoudi RS, Al-Habsi N, Al-Said FA, Al-Rawahy SA, Ahmed M, Deadman L (2010) Effect of salinity on Pythium damping-off of cucumber and on the tolerance of Pythium aphanidermatum. Plant Pathol 59:112–120

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Attaby HSH (2001) Influence of salinity stress on the growth, biochemical changes, and response to gamma irradiation of Penicillium chrysogenum. Pak J Biol Sci 4:703–706

    Article  Google Scholar 

  • Bates L, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bolat I, Dikilitas M, Ercisli S, Ikinci A, Tonkaz T (2014) The effect of water stress on some morphological, physiological, biochemical characteristics and bud success on apple and quince rootstocks. Sci World J: 769732

    Google Scholar 

  • Boumaaza B, Benkhelifa M, Belkhoudja M (2015) Effects of two salts compounds on mycelial growth, sporulation, and spore germination of six isolates of Botrytis cinerea in the Western North of Algeria. Int J Microbiol: 572626

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chance B, Maehly AC (1995) Assay of catalase and peroxidases. Methods Enzymol 2:764–775

    Article  Google Scholar 

  • Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448

    Article  CAS  Google Scholar 

  • Daami-Remadi M, Souissi A, Houn BE, Mansour M, Nasraoui B (2009) Salinity effects on fusarium wilt severity and tomato growth. Dyn Soil Dyn Plant 3:61–69

    Google Scholar 

  • Dikilitas M (2003) Effect of salinity & its interactions with Verticillium albo-atrum on the disease development in tomato (Lycopersicon esculentum Mill.) and lucerne (Medicago sativa & M. media) plants. Ph.D. Thesis, University of Wales, Swansea

    Google Scholar 

  • Dikilitas M, Karakas S (2012) In: Ashraf M (ed) Behaviour of plant pathogens for crops under stress during the determination of physiological, biochemical, and molecular approaches for salt stress tolerance, Chapter 16. Crop production for agricultural improvement. Springer, Heidelberg, pp 417–441

    Google Scholar 

  • Dikilitas M, Karakas S (2014) Crop plants under saline-adapted fungal pathogens: an overview. Chapter 8. In: Emerging technologies and management of crop stress tolerance, volume II A sustainable approach. Elsevier Academic Press, London, pp 173–185

    Google Scholar 

  • EL-Abyad MS, Abu-Taleb AM, Khalil MS (1992) Impact of salinity stress on soil-borne fungi of sugar beet. Plant Soil 143:75–83

    Article  CAS  Google Scholar 

  • Elmer WH (2002) Influence of inoculum density of Fusarium oxysporum f.sp. cyclaminis and sodium chloride on cyclamen and the development of fusarium wilt. Plant Dis 86:389–393

    Article  Google Scholar 

  • Gessler NN, Egorova AS, Belozerskaya TA (2014) Melanin pigments of fungi under extreme environmental conditions (review). Appl Biochem Microbiol 50:105–113

    Article  CAS  Google Scholar 

  • Goicoechea N (2006) Verticillium-induced wilt in pepper: physiological disorders and perspectives for controlling the disease. Plant Pathol J 5:258–265

    Article  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam Md M, Bhowmik PC, Hossain Md A, Rahman MM, Prasad MNV, Ozturk M, Fujita M (2014) Potential use of halophytes to remediate saline soils. BioMed Res Int. Article ID 589341

    Google Scholar 

  • Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui HA (2001) Large family of class III plant peroxidases. Plant Cell Physiol 42:462–468

    Article  CAS  PubMed  Google Scholar 

  • Hodge JE, Hofreiter BT (1962) In: Whistler RL, Be Miller JN (eds) Methods in carbohydrate chemistry. Academic, New York

    Google Scholar 

  • Howell AB, Francois L, Erwin DC (1994) Interactive effect of salinity and Verticillium albo-atrum on Verticillium wilt disease severity and yield of two alfalfa cultivars. Field Crop Res 37:247–251

    Article  Google Scholar 

  • Jahantigh O, Najafi F, Badi HN, Khavari-Nejad RA, Sanjarian F (2016) Changes in antioxidant enzymes activities and proline, total phenol and anthocyanin contents in Hyssopus officinalis L. plants under salt stress. Acta Biol Hung 67:195–204

    Article  CAS  PubMed  Google Scholar 

  • Kuźniak E, Gabara B, Skłodowska M, Libik-Konieczny M, Miszalski Z (2011) Effects of NaCl on the response of Mesembryanthemum crystallinum callus to Botrytis cinerea infection. Biol Plant 55:423–430

    Article  Google Scholar 

  • Labieniec M, Gabryelak T (2006) Oxidatively modified proteins and DNA in digestive gland cells of the fresh-water mussel Unio tumidus in the presence of tannic acid and its derivatives. Mutat Res Genet Toxicol Environ Mutagen 603:48–55

    Article  CAS  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  CAS  PubMed  Google Scholar 

  • Leon L, Lawton MA, Raskin I (1995) Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiol 108:1673–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancinelli AL (1990) Interaction between light quality and light quantity in the photoregulation of anthocyanin production. Plant Physiol 92:1191–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mert HH, Ekmekci S (1987) The effect of salinity and osmotic pressure of the medium on the growth, sporulation, and changes, in the total organic acid content of Aspergillus flavus and Penicillium chrysogenum. Mycopathology 100:85–89

    Article  CAS  Google Scholar 

  • Mohammadi AH, Banihashemi Z, Maftoun M (2007) Interaction between salinity stress and verticillium wilt disease in three pistachio rootstocks in a calcareous soil. J Plant Nutr 30:241–252

    Article  CAS  Google Scholar 

  • Nachmias A, Kaufman Z, Livescu L, Tsror L, Meiri A, Caligari PDS (1993) Effects of salinity and its interactions with disease incidence on potatoes grown in hot climates. Phytoparasitica 21:245–255

    Article  Google Scholar 

  • Nakagawa Y, Tayama S (1995) Cytotoxicity of propyl gallate and related compounds in rat hepatocytes. Arch Toxicol 69:200–208

    Article  Google Scholar 

  • Omori T, Ogawa K, Shimoda M (1995) Breeding of high glycerol-producing shochu yeast (Saccharomyces cerevisiae) with acquired salt tolerance. J Ferment Bioeng 79:560–565

    Article  CAS  Google Scholar 

  • Pegg GF (1989) Pathogenesis in vascular diseases of plants. In: Ayres PG (ed) Effects of disease on the physiology of the growing plant. Cambridge University Press, New York, pp 149–177

    Google Scholar 

  • Ragazzi A, Moricca S (1995) Infection of cotton by Fusarium oxysporum f.sp. vasinfectum as affected by water stress. Phytoparasitica 23:315–321

    Article  Google Scholar 

  • Ragazzi A, Broggio M, Soldi R, Moricca S, Dellavalle I, Sabatini S (1996) Biometry and pathogenicity Fusarium oxysporum f.sp. vasinfectum on a Na2SO4 enriched medium. J Plant Dis Prote 103:272–278

    Google Scholar 

  • Regragui A, Rahouti M, Et Lahlou H (2003) Effect of saline stress on Verticillium albo-atrum: pathogenicity and production of cellulolytic enzymes in vitro. Cryptogam Mycol 24:167–174

    Google Scholar 

  • Saadatmand AR, Banishashemi Z, Sepaskhah AR, Maftoun M (2008) Soil salinity and water stress and their effect on susceptibility to Verticillium wilt disease, ion composition and growth of pistachio. J Phytopathol 156:287–292

    Article  Google Scholar 

  • Sairam RK, Saxena DC (2000) Oxidative stress and antioxidants in wheat genotypes: possible mechanism of water stress tolerance. J Agron Crop Sci 184:55–61

    Article  CAS  Google Scholar 

  • Shahbazi H, Aminian H, Sahebani N, Halterman DA (2010) Biochemical evaluation of resistance responses of potato to different isolates of Alternaria solani. Phytopathology 100:454–459

    Article  CAS  PubMed  Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Triky-Dotan S, Yermiyahu U, Katan J, Gamliel A (2005) Development of crown and root rot disease of tomato under irrigation with saline water. Phytopathology 95:1438–1444

    Article  PubMed  Google Scholar 

  • Turco E, Broggio M, Ragazzi A (1999) Enzymes produced by Fusarium oxysporum f.sp. vasinfectum compared on saline and a non-saline substrate. J Plant Disease Prot 106:333–341

    CAS  Google Scholar 

  • Turco E, Naldini D, Ragazzi A (2002) Disease incidence and vessel anatomy in cotton plants infected with Fusarium oxysporum f.sp. vasinfectum under salinity stress. J Plant Dis Prot 109:15–24

    Google Scholar 

  • Von Tiedemann A (1997) Evidence for a primary role of active oxygen species in induction of host cell death during infection of leaves with Botrytis cinerea. Physiol Mol Plant Pathol 50:151–166

    Article  CAS  Google Scholar 

  • Williamson B, Tudzynski B, Tudzynski P, van Kan JAL (2007) Botrytis cinerea: the cause of grey mould disease. Mol Plant Pathol 8:561–580

    Article  CAS  PubMed  Google Scholar 

  • You M, Colmer TD, Barbetti MJ (2011) Salinity drives host reaction in Phaseolus vulgaris (common bean) to Macrophomina phaseolina. Func Plant Pathol 38:984–992

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Dikilitas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Dikilitas, M., Yucel, N., Dervis, S. (2017). Production of Antioxidant and Oxidant Metabolites in Tomato Plants Infected with Verticillium dahliae Under Saline Conditions. In: Khan, M., Khan, N. (eds) Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress. Springer, Singapore. https://doi.org/10.1007/978-981-10-5254-5_13

Download citation

Publish with us

Policies and ethics