UKA Computer Navigation

  • Pornpavit Sriphirom


Several factors are involved in the failure of unicompartmental knee arthroplasty (UKA), including the patient’s age, anterior cruciate ligament deficiency, and alignment. To address these failures, a computer-aided navigation system that consistently provides accurate measurements was developed to reduce the errors committed with conventional UKA. The undercorrection with a minor varus alignment produced by this system provides appropriate outcomes and longevity for UKAs. The computer navigation system thus offered a procedure to attain optimal alignment. Although a learning period is required for computer-assisted surgery, the computer-assisted UKA produced comparable range of motion and WOMAC and Oxford scores with fixed-bearing UKA implantation.


Unicompartment knee arthroplasty UKA Longevity Outcomes Computer-assisted surgery Navigation Alignment 


  1. 1.
    Matharu G, Robb C, Baloch K, Pynsent P. The Oxford medial unicompartmental knee replacement: survival and the affect of age and gender. Knee. 2012;19(6):913–7.CrossRefGoogle Scholar
  2. 2.
    Hamilton WG, Ammeen DJ, Hopper RH Jr. Mid-term survivorship of minimally invasive unicompartmental arthroplasty with a fixed-bearing implant: revision rate and mechanisms of failure. J Arthroplast. 2014;29(5):989–92.CrossRefGoogle Scholar
  3. 3.
    Lidgren L, Sundberg M, W-Dahl A, Robertsson O. Annual Report 2016: The Swedish Knee Arthroplasty Registry. Accessed 06 June 2017.
  4. 4.
    New Zealand Orthopaedic Association: New Zealand Joint Registry. Accessed 06 June 2017.
  5. 5.
    Berend KR, Lombardi AV Jr, Mallory TH, Adams JB, Groseth KL. Early failure of minimally invasive unicompartmental knee arthroplasty is associated with obesity. Clin Orthop Relat Res. 2005;440:60–6.CrossRefGoogle Scholar
  6. 6.
    Argenson JN, Scuderi GR, Komistek RD, Scott WN, Kelly MA, Aubaniac JM. In vivo kinematic evaluation and design considerations related to high flexion in total knee arthroplasty. J Biomech. 2005;38(2):277–84.CrossRefGoogle Scholar
  7. 7.
    Hauptmann SM, et al. Einfluss Der Retropatellararthrose Auf Das Funktionelle Ergebnis Nach Unikondylären Schlittenprothesen. Orthopade. 2005;34(11):1088–93.CrossRefGoogle Scholar
  8. 8.
    Beard DJ, Pandit H, Gill HS, Hollinghurst D, Dodd CA, Murray DW. The influence of the presence and severity of pre-existing patellofemoral degenerative changes on the outcome of the Oxford medial unicompartmental knee replacement. J Bone Joint Surg Br. 2007;89(12):1597–601.CrossRefGoogle Scholar
  9. 9.
    Murray DW, Goodfellow JW, O’Connor JJ. The Oxford medial unicompartmental arthroplasty: a ten-year survival study. J Bone Joint Surg Br. 1998;80(6):983–9.CrossRefGoogle Scholar
  10. 10.
    Lustig S, Barba N, Magnussen RA, Servien E, Demey G, Neyret P. The effect of gender on outcome of unicompartmental knee arthroplasty. Knee. 2012;19(3):176–9.CrossRefGoogle Scholar
  11. 11.
    W-Dahl A, Robertsson O, Lidgren L, Miller L, Davidson D, Graves S. Unicompartmental knee arthroplasty in patients aged less than 65. Acta Orthop. 2010;81(1):90–4.CrossRefGoogle Scholar
  12. 12.
    Baker P, Jameson S, Critchley R, Reed M, Gregg P, Deehan D. Center and surgeon volume influence the revision rate following unicondylar knee replacement: an analysis of 23,400 medial cemented unicondylar knee replacements. J Bone Joint Surg Am. 2013;95(8):702–9.CrossRefGoogle Scholar
  13. 13.
    Robertsson O, Knutson K, Lewold S, Lidgren L. The routine of surgical management reduces failure after unicompartmental knee arthroplasty. J Bone Joint Surg Br. 2001;83(1):45–9.CrossRefGoogle Scholar
  14. 14.
    Hernigou P, Deschamps G. Alignment influences wear in the knee after medial unicompartmental arthroplasty. Clin Orthop Relat Res. 2004;423:161–5.CrossRefGoogle Scholar
  15. 15.
    Sawatari T, Tsumura H, Iesaka K, Furushiro Y, Torisu T. Three-dimensional finite element analysis of unicompartmental knee arthroplasty—the influence of tibial component inclination. J Orthop Res. 2005;23(3):549–54.CrossRefGoogle Scholar
  16. 16.
    Vasso M, Del Regno C, D’Amelio A, Viggiano D, Corona K, Schiavone Panni A. Minor varus alignment provides better results than neutral alignment in medial UKA. Knee. 2015;22(2):117–21.CrossRefGoogle Scholar
  17. 17.
    Kim KT, Lee S, Kim TW, Lee JS, Boo KH. The influence of postoperative tibiofemoral alignment on the clinical results of unicompartmental knee arthroplasty. Knee Surg Relat Res. 2012;24(2):85–90.CrossRefGoogle Scholar
  18. 18.
    Cassidy K, Tucker S, Rajak Y, Kia M, Imhauser C, Westrich G, et al. Kinematics of passive flexion following balanced and overstuffed fixed bearing unicondylar knee arthroplasty. Knee. 2015;22(6):542–6.CrossRefGoogle Scholar
  19. 19.
    Hernigou P, Deschamps G. Posterior slope of the tibial implant and the outcome of unicompartmental knee arthroplasty. J Bone Joint Surg. 2004;86(3):506–11.CrossRefGoogle Scholar
  20. 20.
    Weber P, Schröder C, Schwiesau J, Utzschneider S, Steinbrück A, Pietschmann M, et al. Increase in the tibial slope reduces wear after medial unicompartmental fixed-bearing arthroplasty of the knee. Biomed Res Int. 2017.
  21. 21.
    Jenny J, Boeri C. Unicompartmental knee prosthesis implantation with a non-image-based navigation system: rationale, technique, case-control comparative study with a conventional instrumented implantation. Knee Surg Sports Traumatol Arthrosc. 2002;11(1):40–5.CrossRefGoogle Scholar
  22. 22.
    Valenzuela G, Jacobson N, Geist D, Valenzuela R, Teitge R. Implant and limb alignment outcomes for conventional and navigated unicompartmental knee arthroplasty. J Arthroplast. 2013;28(3):463–8.CrossRefGoogle Scholar
  23. 23.
    Song E, N M, Lee S, Na B, Seon J. Comparison of outcome and survival after unicompartmental knee arthroplasty between navigation and conventional techniques with an average 9-year follow-up. J Arthroplast. 2016;31(2):395–400.CrossRefGoogle Scholar
  24. 24.
    Australian Orthopedic Association: National Joint Replacement Registry. Accessed 06 June 2017.
  25. 25.
    Jenny J, Ciobanu E, Boeri C. The rationale for navigated minimally invasive unicompartmental knee replacement. Clin Orthop Relat Res. 2007;463:58–62.PubMedGoogle Scholar
  26. 26.
    Casino D, Martelli S, Zaffagnini S, Lopomo N, Iacono F, Bignozzi S, et al. Knee stability before and after total and unicondylar knee replacement: in vivo kinematic evaluation utilizing navigation. J Orthop Res. 2009;27(2):202–7.CrossRefGoogle Scholar
  27. 27.
    Schindler O, Scott W, Scuderi G. The practice of unicompartmental knee arthroplasty in the United Kingdom. J Orthop Surg. 2010;18(3):312–9.CrossRefGoogle Scholar
  28. 28.
    Mont M. Excellent restoration of alignment using computer-assisted total knee arthroplasty for tibial deformities. JBJS Orthop Highlights Knee Surg. 2013;3(4):e5.Google Scholar
  29. 29.
    Garvin K, Barrera A, Mahoney C, Hartman C, Haider H. Total knee arthroplasty with a computer-navigated saw: a pilot study. Clin Orthop Relat Res. 2012;471(1):155–61.CrossRefGoogle Scholar
  30. 30.
    Ong A, Jung K, Orozco F, Delasotta L, Lee D. Total knee arthroplasty using a hybrid navigation technique. J Orthop Surg Res. 2011;6(1):26.CrossRefGoogle Scholar
  31. 31.
    Zelle J, Heesterbeek P, De Waal Malefijt M, Verdonschot N. Numerical analysis of variations in posterior cruciate ligament properties and balancing techniques on total knee arthroplasty loading. Med Eng Phys. 2010;32(7):700–7.CrossRefGoogle Scholar
  32. 32.
    Baier C, Fitz W, Craiovan B, Keshmiri A, Winkler S, Springorum R, et al. Improved kinematics of total knee replacement following partially navigated modified gap-balancing technique. Int Orthop. 2013;38(2):243–9.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Orthopaedic Surgery, Rajavithi HospitalRangsit UniversityBangkokThailand

Personalised recommendations