Skip to main content
  • 797 Accesses

Abstract

Several factors are involved in the failure of unicompartmental knee arthroplasty (UKA), including the patient’s age, anterior cruciate ligament deficiency, and alignment. To address these failures, a computer-aided navigation system that consistently provides accurate measurements was developed to reduce the errors committed with conventional UKA. The undercorrection with a minor varus alignment produced by this system provides appropriate outcomes and longevity for UKAs. The computer navigation system thus offered a procedure to attain optimal alignment. Although a learning period is required for computer-assisted surgery, the computer-assisted UKA produced comparable range of motion and WOMAC and Oxford scores with fixed-bearing UKA implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Matharu G, Robb C, Baloch K, Pynsent P. The Oxford medial unicompartmental knee replacement: survival and the affect of age and gender. Knee. 2012;19(6):913–7.

    Article  Google Scholar 

  2. Hamilton WG, Ammeen DJ, Hopper RH Jr. Mid-term survivorship of minimally invasive unicompartmental arthroplasty with a fixed-bearing implant: revision rate and mechanisms of failure. J Arthroplast. 2014;29(5):989–92.

    Article  Google Scholar 

  3. Lidgren L, Sundberg M, W-Dahl A, Robertsson O. Annual Report 2016: The Swedish Knee Arthroplasty Registry. http://www.myknee.se/pdf/SVK_2016_Eng_1.0.pdf. Accessed 06 June 2017.

  4. New Zealand Orthopaedic Association: New Zealand Joint Registry. http://nzoa.org.nz/system/files/NZJR%2017%20year%20Report.pdf. Accessed 06 June 2017.

  5. Berend KR, Lombardi AV Jr, Mallory TH, Adams JB, Groseth KL. Early failure of minimally invasive unicompartmental knee arthroplasty is associated with obesity. Clin Orthop Relat Res. 2005;440:60–6.

    Article  Google Scholar 

  6. Argenson JN, Scuderi GR, Komistek RD, Scott WN, Kelly MA, Aubaniac JM. In vivo kinematic evaluation and design considerations related to high flexion in total knee arthroplasty. J Biomech. 2005;38(2):277–84.

    Article  Google Scholar 

  7. Hauptmann SM, et al. Einfluss Der Retropatellararthrose Auf Das Funktionelle Ergebnis Nach Unikondylären Schlittenprothesen. Orthopade. 2005;34(11):1088–93.

    Article  CAS  Google Scholar 

  8. Beard DJ, Pandit H, Gill HS, Hollinghurst D, Dodd CA, Murray DW. The influence of the presence and severity of pre-existing patellofemoral degenerative changes on the outcome of the Oxford medial unicompartmental knee replacement. J Bone Joint Surg Br. 2007;89(12):1597–601.

    Article  CAS  Google Scholar 

  9. Murray DW, Goodfellow JW, O’Connor JJ. The Oxford medial unicompartmental arthroplasty: a ten-year survival study. J Bone Joint Surg Br. 1998;80(6):983–9.

    Article  CAS  Google Scholar 

  10. Lustig S, Barba N, Magnussen RA, Servien E, Demey G, Neyret P. The effect of gender on outcome of unicompartmental knee arthroplasty. Knee. 2012;19(3):176–9.

    Article  CAS  Google Scholar 

  11. W-Dahl A, Robertsson O, Lidgren L, Miller L, Davidson D, Graves S. Unicompartmental knee arthroplasty in patients aged less than 65. Acta Orthop. 2010;81(1):90–4.

    Article  Google Scholar 

  12. Baker P, Jameson S, Critchley R, Reed M, Gregg P, Deehan D. Center and surgeon volume influence the revision rate following unicondylar knee replacement: an analysis of 23,400 medial cemented unicondylar knee replacements. J Bone Joint Surg Am. 2013;95(8):702–9.

    Article  Google Scholar 

  13. Robertsson O, Knutson K, Lewold S, Lidgren L. The routine of surgical management reduces failure after unicompartmental knee arthroplasty. J Bone Joint Surg Br. 2001;83(1):45–9.

    Article  CAS  Google Scholar 

  14. Hernigou P, Deschamps G. Alignment influences wear in the knee after medial unicompartmental arthroplasty. Clin Orthop Relat Res. 2004;423:161–5.

    Article  Google Scholar 

  15. Sawatari T, Tsumura H, Iesaka K, Furushiro Y, Torisu T. Three-dimensional finite element analysis of unicompartmental knee arthroplasty—the influence of tibial component inclination. J Orthop Res. 2005;23(3):549–54.

    Article  CAS  Google Scholar 

  16. Vasso M, Del Regno C, D’Amelio A, Viggiano D, Corona K, Schiavone Panni A. Minor varus alignment provides better results than neutral alignment in medial UKA. Knee. 2015;22(2):117–21.

    Article  Google Scholar 

  17. Kim KT, Lee S, Kim TW, Lee JS, Boo KH. The influence of postoperative tibiofemoral alignment on the clinical results of unicompartmental knee arthroplasty. Knee Surg Relat Res. 2012;24(2):85–90.

    Article  Google Scholar 

  18. Cassidy K, Tucker S, Rajak Y, Kia M, Imhauser C, Westrich G, et al. Kinematics of passive flexion following balanced and overstuffed fixed bearing unicondylar knee arthroplasty. Knee. 2015;22(6):542–6.

    Article  Google Scholar 

  19. Hernigou P, Deschamps G. Posterior slope of the tibial implant and the outcome of unicompartmental knee arthroplasty. J Bone Joint Surg. 2004;86(3):506–11.

    Article  Google Scholar 

  20. Weber P, Schröder C, Schwiesau J, Utzschneider S, SteinbrĂ¼ck A, Pietschmann M, et al. Increase in the tibial slope reduces wear after medial unicompartmental fixed-bearing arthroplasty of the knee. Biomed Res Int. 2017. https://doi.org/10.1155/2015/736826.

  21. Jenny J, Boeri C. Unicompartmental knee prosthesis implantation with a non-image-based navigation system: rationale, technique, case-control comparative study with a conventional instrumented implantation. Knee Surg Sports Traumatol Arthrosc. 2002;11(1):40–5.

    Article  Google Scholar 

  22. Valenzuela G, Jacobson N, Geist D, Valenzuela R, Teitge R. Implant and limb alignment outcomes for conventional and navigated unicompartmental knee arthroplasty. J Arthroplast. 2013;28(3):463–8.

    Article  Google Scholar 

  23. Song E, N M, Lee S, Na B, Seon J. Comparison of outcome and survival after unicompartmental knee arthroplasty between navigation and conventional techniques with an average 9-year follow-up. J Arthroplast. 2016;31(2):395–400.

    Article  Google Scholar 

  24. Australian Orthopedic Association: National Joint Replacement Registry. https://aoanjrr.sahmri.com/annual-reports-2016. Accessed 06 June 2017.

  25. Jenny J, Ciobanu E, Boeri C. The rationale for navigated minimally invasive unicompartmental knee replacement. Clin Orthop Relat Res. 2007;463:58–62.

    PubMed  Google Scholar 

  26. Casino D, Martelli S, Zaffagnini S, Lopomo N, Iacono F, Bignozzi S, et al. Knee stability before and after total and unicondylar knee replacement: in vivo kinematic evaluation utilizing navigation. J Orthop Res. 2009;27(2):202–7.

    Article  Google Scholar 

  27. Schindler O, Scott W, Scuderi G. The practice of unicompartmental knee arthroplasty in the United Kingdom. J Orthop Surg. 2010;18(3):312–9.

    Article  Google Scholar 

  28. Mont M. Excellent restoration of alignment using computer-assisted total knee arthroplasty for tibial deformities. JBJS Orthop Highlights Knee Surg. 2013;3(4):e5.

    Google Scholar 

  29. Garvin K, Barrera A, Mahoney C, Hartman C, Haider H. Total knee arthroplasty with a computer-navigated saw: a pilot study. Clin Orthop Relat Res. 2012;471(1):155–61.

    Article  Google Scholar 

  30. Ong A, Jung K, Orozco F, Delasotta L, Lee D. Total knee arthroplasty using a hybrid navigation technique. J Orthop Surg Res. 2011;6(1):26.

    Article  Google Scholar 

  31. Zelle J, Heesterbeek P, De Waal Malefijt M, Verdonschot N. Numerical analysis of variations in posterior cruciate ligament properties and balancing techniques on total knee arthroplasty loading. Med Eng Phys. 2010;32(7):700–7.

    Article  CAS  Google Scholar 

  32. Baier C, Fitz W, Craiovan B, Keshmiri A, Winkler S, Springorum R, et al. Improved kinematics of total knee replacement following partially navigated modified gap-balancing technique. Int Orthop. 2013;38(2):243–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pornpavit Sriphirom .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sriphirom, P. (2018). UKA Computer Navigation. In: Sugano, N. (eds) Computer Assisted Orthopaedic Surgery for Hip and Knee. Springer, Singapore. https://doi.org/10.1007/978-981-10-5245-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5245-3_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5244-6

  • Online ISBN: 978-981-10-5245-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics