Skip to main content

Introduction

  • Chapter
  • First Online:
Galloping Instability to Chaos of Cables

Part of the book series: Nonlinear Physical Science ((NPS))

  • 340 Accesses

Abstract

This book is about analytical galloping dynamics of nonlinear cables under flow loading. To understand galloping dynamics of cables, different mathematical models and techniques have been developed. The perturbation method was employed to determine the inherent dynamical characteristics. In fact, such investigations did not give the adequate results to identify the dynamic characteristics of flow-induced structural vibrations. To solve such a problem, in this book, authors would like to develop analytical solutions of periodic motions and limit cycles for cable galloping caused by fluid-induced structural vibration. Thus, the analytical methods will be briefly reviewed. The perturbation method and generalized harmonic balance techniques are discussed first. The mathematical model of cable galloping is presented and the nonlinear aerodynamic forces are discussed for a better understanding physical mechanism of cable galloping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Birkhoff, G. D. (1913). Proof of Poincare’s geometric theorem. Transactions on American Mathematical Society, 14, 14–22.

    MathSciNet  MATH  Google Scholar 

  • Birkhoff, G. D. (1927). Dynamical Systems. New York: American Mathematical Society.

    Book  MATH  Google Scholar 

  • Blevins, R. D. (1974). Flow induced vibration, Ph.D. Thesis. California Institute of Technology, Pasadena, California.

    Google Scholar 

  • Blevins, R. D. (1977). Flow-induced vibration. New York, N.Y.: Van Nostrand Reinhold Co.

    MATH  Google Scholar 

  • Blevins, R. D., & Iwan, W. D. (1974). The galloping response of a two-degree-of-freedom system. ASME Transactions Journal of Applied Mechanics, 96(3), 1113–1118.

    Article  Google Scholar 

  • Bogoliubov, N., & Mitropolsky, Y. (1961). Asymptotic methods in the theory of nonlinear oscillations. New York: Gordon and Breach.

    Google Scholar 

  • Buonomo, A. (1998a). On the periodic solution of the van der Pol equation for the small damping parameter. International Journal of Circuit Theory and Applications, 26, 39–52.

    Article  MATH  Google Scholar 

  • Buonomo, A. (1998b). The periodic solution of van der Pol’s equation. SIAM Journal on Applied Mathematics, 59, 156–171.

    Article  MathSciNet  MATH  Google Scholar 

  • Cartwright, M. L., & Littlewood, J. E. (1945). On nonlinear differential equations of the second order I. The equation ӱ − k(1 − y 2) + y = bλk cos(λt + α), k large. Journal of London Mathematical Society, 20, 180–189.

    Article  MathSciNet  MATH  Google Scholar 

  • Catctano, E. S. (2007). Cable vibrations in cable-stayed bridges. Zurich, Switzerland: International Association for Bridge and Structural Engineering.

    Google Scholar 

  • Coppola, V. T., & Rand, R. H. (1990). Averaging using elliptic functions: Approximation of limit cycle. Acta Mechanica, 81, 125–142.

    Article  MathSciNet  MATH  Google Scholar 

  • den Hartog, J. P. (1932). Transmission line vibration due to sleet. AIEE Transactions, 51(part 4), 1074–1086.

    Google Scholar 

  • Desai, Y. M., Shah, A. H., & Popplewell, N. (1990). Galloping analysis for two degree-of-freedom oscillator. Journal of Engineering Mechanics, 116(12), 2583–2602.

    Article  Google Scholar 

  • Duffing, G. (1918). Erzwunge Schweingungen bei veranderlicher eigenfrequenz. Braunschweig: F. Viewig u. Sohn.

    MATH  Google Scholar 

  • Edwards, A. T., & Madeyski, A. (1956). Progress report on the investigation of galloping of transmission line conductor. AIEE Transactions, 75, 666–686.

    Google Scholar 

  • Fatou, P. (1928). Suré le mouvement d’un systeme soumis à des forces a courte periode. Bulletin of the Mathematical Society of France, 56, 98–139.

    Article  MathSciNet  MATH  Google Scholar 

  • Hayashi, C. (1964). Nonlinear oscillations in physical systems. New York: McGraw-Hill Book Company.

    MATH  Google Scholar 

  • Holmes, P. J. (1979). A nonlinear oscillator with strange attractor. Philosophical Transactions of the Royal Society A, 292, 419–448.

    Article  MathSciNet  MATH  Google Scholar 

  • Holmes, P. J., & Rand, D. A. (1976). The bifurcation of Duffing’s equations: an application of catastrophe theory. Journal of Sound and Vibration, 44, 1021–1032.

    MATH  Google Scholar 

  • Kao, Y. H., Wang, C. S., & Yang, T. H. (1992). Influences of harmonic coupling on bifurcations in Duffing oscillator with bounded potential wells. Journal of Sound and Vibration, 159, 13–21.

    Article  MathSciNet  MATH  Google Scholar 

  • Kovacic, I., & Mickens, R. E. (2012). A generalized van der Pol type oscillator: Investigation of the properties of a limit cycle. Mathematical and Computer Modeling, 55, 645–655.

    Article  MathSciNet  MATH  Google Scholar 

  • Krylov, N. M., & Bogolyubov, N. N. (1935). Methodes approchees de la mecanique non-lineaire dans leurs application a l’Aeetude de la perturbation des mouvements periodiques de divers phenomenes de resonance s’y rapportant (Kiev, Academie des Sciences d’Ukraine) (in French).

    Google Scholar 

  • Lagrange, J. L. (1788). Mecanique analytique (Vol. 2). Paris: Albert Balnchard (edition 1965).

    Google Scholar 

  • Levinson, N. (1948). A simple second order differential equation with singular motions. Proceedings of the National Academy of Science of the United States of America, 34(1), 13–15.

    Article  MathSciNet  MATH  Google Scholar 

  • Levinson, N. (1949). A second order differential equation with singular solutions. Annals of Mathematics, Second Series, 50(1), 127–153.

    Article  MathSciNet  MATH  Google Scholar 

  • Luo, A. C. J. (2012). Continuous Dynamical Systems. Beijing/Glen Carbon: Higher Education Press/L&H Scientific.

    MATH  Google Scholar 

  • Luo, A. C. J. (2014). Toward analytical chaos in nonlinear systems. New York: Wiley.

    Book  MATH  Google Scholar 

  • Luo, A. C. J., & Han, R. P. S. (1997). A quantitative stability and bifurcation analyses of a generalized Duffing oscillator with strong nonlinearity. Journal of Franklin Institute, 334B, 447–459.

    Article  MathSciNet  MATH  Google Scholar 

  • Luo, A. C. J., & Han, R. P. S. (1999). Analytical predictions of chaos in a nonlinear rod. Journal of Sound and Vibration, 227(3), 523–544.

    Article  Google Scholar 

  • Luo, A. C. J., & Huang, J. (2012a). Approximate solutions of periodic motions in nonlinear systems via a generalized harmonic balance. Journal of Vibration and Control, 18, 1661–1671.

    Article  MathSciNet  Google Scholar 

  • Luo, A. C. J., & Huang, J. Z. (2012b). Analytical dynamics of period-m flows and chaos in nonlinear Systems. International Journal of Bifurcation and Chaos, 22(4), 29 pages. (Article No. 1250093, 29 ).

    Article  MathSciNet  MATH  Google Scholar 

  • Luo, A. C. J., & Huang, J. Z. (2012c). Analytical routes of period-1 motions to chaos in a periodically forced Duffing oscillator with a twin-well potential. Journal of Applied Nonlinear Dynamics, 1, 73–108.

    Article  MATH  Google Scholar 

  • Luo, A. C. J., & Huang, J. Z. (2012d). Unstable and stable period-m motions in a twin-well potential Duffing oscillator. Discontinuity, Nonlinearity and Complexity, 1, 113–145.

    Article  MATH  Google Scholar 

  • Luo, A. C. J., & Huang, J. Z. (2013a). Analytical solutions for asymmetric periodic motions to chaos in a hardening Duffing oscillator. Nonlinear Dynamics, 72, 417–438.

    Article  MathSciNet  Google Scholar 

  • Luo, A. C. J., & Huang, J. Z. (2013b). Analytical period-3 motions to chaos in a hardening Duffing oscillator. Nonlinear Dynamics, 73, 1905–1932.

    Article  MathSciNet  Google Scholar 

  • Luo, A. C. J., & Huang, J. Z. (2013c). An analytical prediction of period-1 motions to chaos in a softening Duffing oscillator. International Journal of Bifurcation and Chaos, 23(5), 31 pages. (Article No: 1350086).

    Article  Google Scholar 

  • Luo, A. C. J., & Huang, J. Z. (2014). Period-3 motions to chaos in a softening Duffing oscillator. International Journal of Bifurcation and Chaos, 24, 26 pages (Article 1430010).

    Google Scholar 

  • Luo, A. C. J., & Lakeh, A. B. (2013). Period-m motions and bifurcation trees in a periodically forced, van der Pol-Duffing oscillator. International Journal of Dynamics and Control, 2(4), 474–493.

    Article  Google Scholar 

  • Luo, A. C. J., & Laken, A. B. (2013). Analytical solutions for period-m motions in a periodically forced van der Pol oscillator. International Journal of Dynamics and Control, 1(2), 99–115.

    Article  Google Scholar 

  • Luo, A. C. J., & Yu, B. (2013a). Analytical solutions for stable and unstable period-1 motion in a periodically forced oscillator with quadratic nonlinearity. ASME Journal of Vibration and Acoustics, 135, 5 pages. (Article no: 034503).

    Article  Google Scholar 

  • Luo, A. C. J., & Yu, B. (2013b). Period-m motions and bifurcation trees in a periodically excited, quadratic nonlinear oscillator. Discontinuity, Nonlinearity, and Complexity, 3, 263–288.

    Article  MATH  Google Scholar 

  • Luo, A. C. J., & Yu, B. (2014a). On effects of excitation amplitude on bifurcation trees of periodic motions in a parametric, quadratic nonlinear oscillator. Nonlinear Dynamics and Mobile Robot, 1(2), 231–263.

    Google Scholar 

  • Luo, A. C. J., & Yu, B. (2014b). Bifurcation trees of periodic motion to chaos in a parametric, quadratic nonlinear oscillator. International Journal of Bifurcation and Chaos, 24, 28 pages. (1450075).

    MathSciNet  Google Scholar 

  • Luo, A. C. J, & Yu, B. (2015a). Complex period-1 motions in a periodically forced, quadratic nonlinear oscillator. Journal of Vibration and Control, 21 (5), 896–906.

    Google Scholar 

  • Luo, A. C. J., & Yu, B. (2015b). Bifurcation trees of period-1 motions to chaos in a two-degree-of-freedom, nonlinear oscillator. International Journal of Bifurcation and Chaos, 25 (Article No. 1550179).

    Google Scholar 

  • Luo, A. C. J., & Yu, B. (2016a). Analytical routes of period-m motions to chaos in a parametric, quadratic nonlinear oscillator. International Journal of Dynamics and Control, 4(1), 1–22.

    Google Scholar 

  • Luo, A. C. J., & Yu, B. (2016b). Analytical period-1 motions to chaos in a two-degree-of-freedom oscillator with a hardening nonlinear spring. International Journal of Dynamics and Control (in press).

    Google Scholar 

  • Minorsky, N. (1962). Nonlinear oscillations. New York: Van Nostrand.

    MATH  Google Scholar 

  • Nayfeh, A. H. (1973). Perturbation methods. New York: John Wiley.

    MATH  Google Scholar 

  • Nayfeh, A. H. (1981). Introduction to perturbation techniques. New York: John Wiley and Sons.

    MATH  Google Scholar 

  • Nayfeh, A. H., & Mook, D. T. (1979). Nonlinear oscillation. New York: John Wiley.

    MATH  Google Scholar 

  • Nigol, O., & Buchan, P. G. (1981). Conductor galloping 2: Torsional mechanism. IEEE Transactions, 100(2), 708–720.

    Google Scholar 

  • Parkinson, G. V. (1989). Phenomena and modeling of flow-induced vibrations of buff bodies. Progress of Aerospace Science, 26, 169–224.

    Article  Google Scholar 

  • Peng, Z. K., Lang, Z. Q., Billings, S. A., & Tomlinson, G. R. (2008). Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis. Journal of Sound and Vibration, 311, 56–73.

    Article  Google Scholar 

  • Poincare, H. (1890). Sur les equations de la dynamique et le probleme de trios corps. Acta Mathematica, 13, 1–270.

    MATH  Google Scholar 

  • Poincare, H. (1899). Les Methods Nouvelles de la Mechanique Celeste. Paris: Gauthier-Villars. (3 Vols.).

    Google Scholar 

  • Richardson, A. S., Jr. (1981). Dynamic analysis of lightly iced conductor galloping in two degrees of freedom. Proceedings on IEEE, Pt. C, 128(4), 211–218.

    Google Scholar 

  • Slate, J. E. (1959). Aeroelastic instability of a structural angle section, Ph.D. Thesis. University of British Columbia, Vancouver, Canada.

    Google Scholar 

  • Stoker, J. J. (1950). Nonlinear vibrations. New York: Wiley.

    MATH  Google Scholar 

  • Ueda, Y. (1980). Explosion of strange attractors exhibited by the Duffing equations. Annuals of the New York Academy of Science, 357, 422–434.

    Article  Google Scholar 

  • van der Pol, B. (1920). A theory of the amplitude of free and forced triode vibrations. Radio Review, 1(701–710), 754–762.

    Google Scholar 

  • van der Pol, B., & van der Mark, J. (1927). Frequency demultiplication. Nature, 120, 363–364.

    Article  Google Scholar 

  • Wang, C. S., Kao, Y. H., Huang, J. C., & Gou, Y. H. (1992). Potential dependence of the bifurcation structure in generalized Duffing oscillators. Physical Review A, 45, 3471–3485.

    Article  Google Scholar 

  • Yu, P., Shah, A. H., & Popplewell, N. (1993). Three-degree-of-freedom model for galloping (parts I and II). Journal of Engineering Mechanics, 119, 2405–2448.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert C. J. Luo .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd. and Higher Education Press, Beijing

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luo, A.C.J., Yu, B. (2017). Introduction. In: Galloping Instability to Chaos of Cables. Nonlinear Physical Science. Springer, Singapore. https://doi.org/10.1007/978-981-10-5242-2_1

Download citation

Publish with us

Policies and ethics