Skip to main content

Deep Learning in Social Computing

  • Chapter
  • First Online:
Deep Learning in Natural Language Processing

Abstract

The goal of social computing is to devise computational systems to learn mechanisms and principles to explain and understand the behaviors of each individual and collective teams, communities, and organizations. The unprecedented online data in social media provides a fruitful resource for this purpose. However, traditional techniques have a hard time in handling the complex and heterogeneous nature of social media for social computing. Fortunately, the recent revival and success of deep learning brings new opportunities and solutions to address these challenges. This chapter introduces the recent progress of deep learning on social computing in three aspects, namely user-generated content, social connections, and recommendation, which have covered most of the core elements and applications in social computing. Our focus lies in the discussions on how to adapt deep learning techniques to mainstream social computing tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Other data types such as images and videos are not considered, which are beyond the scope of this chapter.

  2. 2.

    http://www.epinionglobal.com/.

  3. 3.

    In our case, a vertex corresponds to a user, and the graph corresponds to the user network. Unless specified, we will use “network” for short instead of “user network”, since our methods are general and can be essentially applied to any networks of other types.

  4. 4.

    Strictly speaking, the embedding based models are not standard neural networks, such as word2vec (Mikolov et al. 2013).

References

  • Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734–749.

    Article  Google Scholar 

  • Alpaydin, E. (2014). Introduction to machine learning. Cambridge: MIT press.

    MATH  Google Scholar 

  • Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. CoRR. arXiv:1409.0473.

  • Balasubramanian, M., & Schwartz, E. L. (2002). The isomap algorithm and topological stability. Science, 295(5552), 7–7.

    Article  Google Scholar 

  • Belkin, M. & Niyogi, P. (2001). Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS (pp. 585–591).

    Google Scholar 

  • Cao, S., Lu, W., & Xu, Q. (2015). GraRep: Learning graph representations with global structural information (pp. 891–900).

    Google Scholar 

  • Cao, S., Lu, W., & Xu, Q. (2016). Deep neural networks for learning graph representations (pp. 1145–1152).

    Google Scholar 

  • Chang, S., Han, W., Tang, J., Qi, G., Aggarwal, C. C., & Huang, T. S. (2015). Heterogeneous network embedding via deep architectures (pp. 119–128).

    Google Scholar 

  • Chen, T. & Sun, Y. (2016). Task-guided and path-augmented heterogeneous network embedding for author identification. arXiv:1612.02814.

  • Chen, J., Zhang, Q., & Huang, X. (2016). Incorporate group information to enhance network embedding (pp. 1901–1904).

    Google Scholar 

  • Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., et al. (2016). Wide and deep learning for recommender systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, DLRS 2016 (pp. 7–10).

    Google Scholar 

  • Chung, J., Gulcehre, C., Cho, K., & Bengio, Y. (2014). Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv:1412.3555.

  • Cortizo, J. C., Carrero, F. M., Cantador, I., Troyano, J. A., & Rosso, P. (2012). Introduction to the special section on search and mining user-generated content. ACM TIST, 3(4), 65:1–65:3.

    Article  Google Scholar 

  • Covington, P., Adams, J., & Sargin, E. (2016). Deep neural networks for youtube recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, September 15–19, 2016 (pp. 191–198).

    Google Scholar 

  • De Campos, L. M., Fernández-Luna, J. M., Huete, J. F., & Rueda-Morales, M. A. (2010). Combining content-based and collaborative recommendations: A hybrid approach based on bayesian networks. International Journal of Approximate Reasoning, 51(7), 785–799.

    Article  Google Scholar 

  • Easley, D., & Kleinberg, J. (2010). Networks, crowds, and markets: Reasoning about a highly connected world. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Elkahky, A. M., Song, Y., & He, X. (2015). A multi-view deep learning approach for cross domain user modeling in recommendation systems. In Proceedings of the 24th International Conference on World Wide Web, WWW 2015, Florence, Italy, May 18–22, 2015 (pp. 278–288).

    Google Scholar 

  • Gong, Y. & Zhang, Q. (2016). Hashtag recommendation using attention-based convolutional neural network. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9–15 July 2016 (pp. 2782–2788).

    Google Scholar 

  • Grover, A. & Leskovec, J. (2016). node2vec: Scalable feature learning for networks (pp. 855–864).

    Google Scholar 

  • Guo, S., Wang, Q., Wang, L., Wang, B., & Guo, L. (2016). Jointly embedding knowledge graphs and logical rules. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (pp. 1488–1498).

    Google Scholar 

  • He, X. & Chua, T.-S. (2017). Neural factorization machines for sparse predictive analytics. In Proceedings of The 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.

    Google Scholar 

  • He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T.-S. (2017). Neural collaborative filtering. In Proceedings of the 26th International World Wide Web Conference.

    Google Scholar 

  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.

    Article  Google Scholar 

  • Homans, G. C. (1974). Social behavior: Its elementary forms.

    Google Scholar 

  • Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2), 251–257.

    Article  MathSciNet  Google Scholar 

  • Huang, Z. & Mamoulis, N. (2017). Heterogeneous information network embedding for meta path based proximity. CoRR. arXiv:1701.05291.

  • Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A., & Heck, L. (2013). Learning deep structured semantic models for web search using clickthrough data. In Proceedings of the 22nd ACM International Conference on Information and Knowledge Management (pp. 2333–2338). ACM.

    Google Scholar 

  • Huang, X., Li, J., & Hu, X. (2017). Label informed attributed network embedding (pp. 731–739).

    Google Scholar 

  • Jeh, G. & Widom, J. (2002). SimRank: A measure of structural-context similarity. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 538–543). ACM.

    Google Scholar 

  • Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! the challenges and opportunities of social media. Business Horizons, 53(1), 59–68.

    Article  Google Scholar 

  • King, I., Li, J., & Chan, K. T. (2009). A brief survey of computational approaches in social computing. In International Joint Conference on Neural Networks, 2009. IJCNN 2009 (pp. 1625–1632). IEEE.

    Google Scholar 

  • Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender systems. Computer, 42(8), 4179.

    Article  Google Scholar 

  • Kwak, H., Lee, C., Park, H., & Moon, S. (2010). What is twitter, a social network or a news media? In Proceedings of the 19th International Conference on World Wide Web, WWW ’10 (pp. 591–600). New York, NY, USA: ACM.

    Google Scholar 

  • Le, Q. V. & Mikolov, T. (2014). Distributed representations of sentences and documents. In Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21–26 June 2014 (pp. 1188–1196).

    Google Scholar 

  • Levy, O. & Goldberg, Y. (2014). Neural word embedding as implicit matrix factorization. In Advances in neural information processing systems (pp. 2177–2185).

    Google Scholar 

  • Li, C., Ma, J., Guo, X., & Mei, Q. (2016). DeepCas: An end-to-end predictor of information cascades. arXiv:1611.05373.

  • Liang, D., Altosaar, J., Charlin, L., & Blei, D. M. (2016). Factorization meets the item embedding: Regularizing matrix factorization with item co-occurrence. In Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, September 15–19, 2016 (pp. 59–66).

    Google Scholar 

  • Ling, W., Tsvetkov, Y., Amir, S., Fermandez, R., Dyer, C., Black, A. W., et al. (2015). Not all contexts are created equal: Better word representations with variable attention. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (pp. 1367–1372).

    Google Scholar 

  • Lops, P., De Gemmis, M., & Semeraro, G. (2011). Content-based recommender systems: State of the art and trends. Recommender systems handbook (pp. 73–105). Boston: Springer.

    Chapter  Google Scholar 

  • Luong, T., Pham, H., & Manning, C. D. (2015). Effective approaches to attention-based neural machine translation. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September 17–21, 2015 (pp. 1412–1421).

    Google Scholar 

  • Ma, J., Gao, W., Mitra, P., Kwon, S., Jansen, B. J., Wong, K., et al. (2016). Detecting rumors from microblogs with recurrent neural networks. In Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9–15 July 2016 (pp. 3818–3824).

    Google Scholar 

  • Manning, C. D., Raghavan, P., & Schütze, H. (2008). Introduction to information retrieval. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Mikolov, T., Karafiát, M., Burget, L., Cernockỳ, J., & Khudanpur, S. (2010). Recurrent neural network based language model. In Interspeech (Vol. 2, p. 3).

    Google Scholar 

  • Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems (pp. 3111–3119).

    Google Scholar 

  • Mnih, V., Heess, N., Graves, A., & Kavukcuoglu, K. (2014). Recurrent models of visual attention. In Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information Processing Systems December 8–13, 2014, Montreal, Quebec, Canada (pp. 2204–2212).

    Google Scholar 

  • Parameswaran, M., & Whinston, A. B. (2007). Social computing: An overview. Communications of the Association for Information Systems, 19(1), 37.

    Google Scholar 

  • Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of social representations (pp. 701–710).

    Google Scholar 

  • Rendle, S. (2012). Factorization machines with libFM. ACM Transactions on Intelligent Systems and Technology (TIST), 3(3), 57.

    Google Scholar 

  • Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323–2326.

    Article  Google Scholar 

  • Sahlins, M. (2017). Stone age economics. Routledge: Taylor & Francis.

    Google Scholar 

  • Salakhutdinov, R., Mnih, A., & Hinton, G. (2007). Restricted Boltzmann machines for collaborative filtering. In International Conference on Machine Learning (pp. 791–798).

    Google Scholar 

  • Schuler, D. (1994). Social computing. Communications of the ACM, 37(1), 28–108.

    Article  Google Scholar 

  • Shang, J., Qu, M., Liu, J., Kaplan, L. M., Han, J., & Peng, J. (2016). Meta-path guided embedding for similarity search in large-scale heterogeneous information networks. CoRR. arXiv:1610.09769.

  • Su, X., & Khoshgoftaar, T. M. (2009). A survey of collaborative filtering techniques. Advances in Artificial Intelligence, 2009, 4.

    Article  Google Scholar 

  • Sun, Y., Han, J., Yan, X., Yu, P. S., & Wu, T. (2011). PathSim: Meta path-based top-k similarity search in heterogeneous information networks. Proceedings of the VLDB Endowment, 4(11), 992–1003.

    Google Scholar 

  • Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015). LINE: Large-scale information network embedding (pp. 1067–1077).

    Google Scholar 

  • van den Oord, A., Dieleman, S., & Schrauwen, B. (2013). Deep content-based music recommendation. In Advances in Neural Information Processing Systems 26: 27th Annual Conference on Neural Information Processing Systems 2013. Proceedings of a Meeting Held, December 5–8, 2013, Lake Tahoe, Nevada, United States (pp. 2643–2651).

    Google Scholar 

  • Vinyals, O. & Le, Q. V. (2015). A neural conversational model. CoRR. arXiv:1506.05869.

  • Wang, C. & Blei, D. M. (2011). Collaborative topic modeling for recommending scientific articles. In Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 448–456). ACM.

    Google Scholar 

  • Wang, D., Cui, P., & Zhu, W. (2016a). Structural deep network embedding (pp. 1225–1234).

    Google Scholar 

  • Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W., & Yang, S. (2017). Community preserving network embedding (pp. 203–209).

    Google Scholar 

  • Wang, P., Guo, J., Lan, Y., Xu, J., Wan, S., & Cheng, X. (2015b). Learning hierarchical representation model for nextbasket recommendation. In International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 403–412).

    Google Scholar 

  • Wang, H., Shi, X., & Yeung, D. (2016b). Collaborative recurrent autoencoder: Recommend while learning to fill in the blanks. In Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5–10, 2016, Barcelona, Spain (pp. 415–423).

    Google Scholar 

  • Wang, H., Wang, N., & Yeung, D. (2015a). Collaborative deep learning for recommender systems. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, August 10–13, 2015 (pp. 1235–1244).

    Google Scholar 

  • Wang, J., Zhao, W. X., He, Y., & Li, X. (2014). Infer user interests via link structure regularization. ACM TIST, 5(2), 23:1–23:22.

    Article  Google Scholar 

  • Wang, F.-Y., Carley, K. M., Zeng, D., & Mao, W. (2007). Social computing: From social informatics to social intelligence. IEEE Intelligent Systems, 22(2), 79–83.

    Article  Google Scholar 

  • Wang, F., Li, T., Wang, X., Zhu, S., & Ding, C. (2011). Community discovery using nonnegative matrix factorization. Data Mining and Knowledge Discovery, 22(3), 493–521.

    Article  MathSciNet  Google Scholar 

  • Welch, M. J., Schonfeld, U., He, D., & Cho, J. (2011). Topical semantics of twitter links. In Proceedings of the Fourth ACM International Conference on Web Search and Data Mining (pp. 327–336). ACM.

    Google Scholar 

  • Weng, J., Lim, E., Jiang, J., & He, Q. (2010). Twitterrank: Finding topic-sensitive influential twitterers. In Proceedings of the Third International Conference on Web Search and Web Data Mining, WSDM 2010, New York, NY, USA, February 4–6, 2010 (pp. 261–270).

    Google Scholar 

  • Weston, J., Chopra, S., & Adams, K. (2014). #tagspace: Semantic embeddings from hashtags. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, EMNLP 2014, October 25–29, 2014, Doha, Qatar, A meeting of SIGDAT, A Special Interest Group of the ACL (pp. 1822–1827).

    Google Scholar 

  • Wu, C., Ahmed, A., Beutel, A., Smola, A. J., & Jing, H. (2017a). Recurrent recommender networks. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, WSDM 2017, Cambridge, United Kingdom, February 6–10, 2017 (pp. 495–503).

    Google Scholar 

  • Wu, C., Ahmed, A., Beutel, A., Smola, A. J., & Jing, H. (2017b). Recurrent recommender networks. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining, WSDM 2017, Cambridge, United Kingdom, February 6–10, 2017 (pp. 495–503).

    Google Scholar 

  • Xie, R., Liu, Z., Jia, J., Luan, H., & Sun, M. (2016). Representation learning of knowledge graphs with entity descriptions. In AAAI (pp. 2659–2665).

    Google Scholar 

  • Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A. C., Salakhutdinov, R., et al. (2015). Show, attend and tell: Neural image caption generation with visual attention. In Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6–11 July 2015 (pp. 2048–2057).

    Google Scholar 

  • Yang, C., Liu, Z., Zhao, D., Sun, M., & Chang, E. Y. (2015). Network representation learning with rich text information. In IJCAI (pp. 2111–2117).

    Google Scholar 

  • Yang, C., Sun, M., Zhao, W. X., Liu, Z., & Chang, E. Y. (2017). A neural network approach to jointly modeling social networks and mobile trajectories. ACM Transactions on Information Systems, 35(4), 36:1–36:28.

    Article  Google Scholar 

  • Yu, Y., Wan, X., & Zhou, X. (2016). User embedding for scholarly microblog recommendation. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, ACL 2016, August 7–12, 2016, Berlin, Germany, Volume 2: Short Papers.

    Google Scholar 

  • Zhang, Q., Wang, J., Huang, H., Huang, X., & Gong, Y. (2017). Hashtag recommendation for multimodal microblog using co-attention network. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19–25, 2017 (pp. 3420–3426).

    Google Scholar 

  • Zhang, F., Yuan, N. J., Lian, D., Xie, X., & Ma, W. (2016). Collaborative knowledge base embedding for recommender systems. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August 13–17, 2016, pages 353–362.

    Google Scholar 

  • Zhao, W. X., Guo, Y., He, Y., Jiang, H., Wu, Y., & Li, X. (2014). We know what you want to buy: A demographic-based system for product recommendation on microblogs. In The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’14, New York, NY, USA, August 24–27, 2014 (pp. 1935–1944).

    Google Scholar 

  • Zhao, W. X., Wang, J., He, Y., Nie, J., & Li, X. (2013). Originator or propagator?: Incorporating social role theory into topic models for twitter content analysis. In 22nd ACM International Conference on Information and Knowledge Management, CIKM’13, San Francisco, CA, USA, October 27–November 1, 2013 (pp. 1649–1654).

    Google Scholar 

  • Zhao, W. X., Huang, J., & Wen, J.-R. (2016a). Learning distributed representations for recommender systems with a network embedding approach. Information retrieval technology (pp. 224–236). Cham: Springer.

    Chapter  Google Scholar 

  • Zhao, W. X., Li, S., He, Y., Chang, E. Y., Wen, J.-R., & Li, X. (2016b). Connecting social media to e-commerce: Cold-start product recommendation using microblogging information. IEEE Transactions on Knowledge and Data Engineering, 28(5), 1147–1159.

    Article  Google Scholar 

  • Zhao, W. X., Li, S., He, Y., Wang, L., Wen, J., & Li, X. (2016c). Exploring demographic information in social media for product recommendation. Knowledge and Information Systems, 49(1), 61–89.

    Article  Google Scholar 

  • Zhao, W. X., Wang, J., He, Y., Nie, J., Wen, J., & Li, X. (2015). Incorporating social role theory into topic models for social media content analysis. IEEE Transactions on Knowledge and Data Engineering, 27(4), 1032–1044.

    Article  Google Scholar 

  • Zheng, L., Noroozi, V., & Yu, P. S. (2017). Joint deep modeling of users and items using reviews for recommendation. In Proceedings of the Tenth ACM International Conference on Web Search and Data Mining (pp. 425–434). ACM.

    Google Scholar 

  • Zheng, Y., Tang, B., Ding, W., & Zhou, H. (2016). A neural autoregressive approach to collaborative filtering. In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19–24, 2016 (pp. 764–773).

    Google Scholar 

  • Zhou, N., Zhao, W. X., Zhang, X., Wen, J.-R., & Wang, S. (2016). A general multi-context embedding model for mining human trajectory data. IEEE Transactions on Knowledge and Data Engineering, 28(8), 1945–1958.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, X., Li, C. (2018). Deep Learning in Social Computing. In: Deng, L., Liu, Y. (eds) Deep Learning in Natural Language Processing. Springer, Singapore. https://doi.org/10.1007/978-981-10-5209-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5209-5_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5208-8

  • Online ISBN: 978-981-10-5209-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics