Skip to main content

Long Noncoding RNAs in the Yeast S. cerevisiae

  • Chapter
  • First Online:
Book cover Long Non Coding RNA Biology

Abstract

Long noncoding RNAs have recently been discovered to comprise a sizeable fraction of the RNA World. The scope of their functions, physical organization, and disease relevance remain in the early stages of characterization. Although many thousands of lncRNA transcripts recently have been found to emanate from the expansive DNA between protein-coding genes in animals, there are also hundreds that have been found in simple eukaryotes. Furthermore, lncRNAs have been found in the bacterial and archaeal branches of the tree of life, suggesting they are ubiquitous. In this chapter, we focus primarily on what has been learned so far about lncRNAs from the greatly studied single-celled eukaryote, the yeast Saccharomyces cerevisiae. Most lncRNAs examined in yeast have been implicated in transcriptional regulation of protein-coding genes—often in response to forms of stress—whereas a select few have been ascribed yet other functions. Of those known to be involved in transcriptional regulation of protein-coding genes, the vast majority function in cis. There are also some yeast lncRNAs identified that are not directly involved in regulation of transcription. Examples of these include the telomerase RNA and telomere-encoded transcripts. In addition to its role as a template-encoding telomeric DNA synthesis, telomerase RNA has been shown to function as a flexible scaffold for protein subunits of the RNP holoenzyme. The flexible scaffold model provides a specific mechanistic paradigm that is likely to apply to many other lncRNAs that assemble and orchestrate large RNP complexes, even in humans. Looking to the future, it is clear that considerable fundamental knowledge remains to be obtained about the architecture and functions of lncRNAs. Using genetically tractable unicellular model organisms should facilitate lncRNA characterization. The acquired basic knowledge will ultimately translate to better understanding of the growing list of lncRNAs linked to human maladies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertone P, Stolc V, Royce TE et al (2004) Global identification of human transcribed sequences with genome tiling arrays. Science 306(5705):2242–2246

    Article  CAS  PubMed  Google Scholar 

  2. Guttman M, Amit I, Garber M et al (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carninci P, Kasukawa T, Katayama S et al (2005) The transcriptional landscape of the mammalian genome. Science 309(5740):1559–1563

    Article  CAS  PubMed  Google Scholar 

  4. Nagalakshmi U, Wang Z, Waern K et al (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320(5881):1344–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jacquier A (2009) The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat Rev Genet 10(12):833–844

    Article  CAS  PubMed  Google Scholar 

  6. Wilhelm BT, Marguerat S, Watt S et al (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature 453(7199):1239–1243

    Article  CAS  PubMed  Google Scholar 

  7. Xu Z, Wei W, Gagneur J et al (2009) Bidirectional promoters generate pervasive transcription in yeast. Nature 457(7232):1033–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu J, Delneri D, O’Keefe RT (2012) Non-coding RNAs in Saccharomyces cerevisiae: what is the function? Biochem Soc Trans 40(4):907–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lardenois A, Liu Y, Walther T et al (2011) Execution of the meiotic noncoding RNA expression program and the onset of gametogenesis in yeast require the conserved exosome subunit Rrp6. Proc Natl Acad Sci U S A 108(3):1058–1063

    Article  CAS  PubMed  Google Scholar 

  10. Shichino Y, Yamashita A, Yamamoto M (2014) Meiotic long non-coding meiRNA accumulates as a dot at its genetic locus facilitated by Mmi1 and plays as a decoy to lure Mmi1. Open Biol 4(6):140022

    Article  PubMed  PubMed Central  Google Scholar 

  11. Toesca I, Nery CR, Fernandez CF et al (2011) Cryptic transcription mediates repression of subtelomeric metal homeostasis genes. PLoS Genet 7(6):e1002163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shearwin KE, Callen BP, Egan JB (2005) Transcriptional interference—a crash course. Trends Genet 21(6):339–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martens JA, Winston F (2002) Evidence that Swi/Snf directly represses transcription in S. cerevisiae. Genes Dev 16(17):2231–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Martens JA, Laprade L, Winston F (2004) Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature 429(6991):571–574

    Article  CAS  PubMed  Google Scholar 

  15. Martens JA, Wu PY, Winston F (2005) Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae. Genes Dev 19(22):2695–2704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hainer SJ, Pruneski JA, Mitchell RD et al (2011) Intergenic transcription causes repression by directing nucleosome assembly. Genes Dev 25(1):29–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thebault P, Boutin G, Bhat W et al (2011) Transcription regulation by the noncoding RNA SRG1 requires Spt2-dependent chromatin deposition in the wake of RNA polymerase II. Mol Cell Biol 31(6):1288–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yu Y, Yarrington RM, Chuong EB et al (2016) Disruption of promoter memory by synthesis of a long noncoding RNA. Proc Natl Acad Sci U S A 113(34):9575–9580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van Werven FJ, Neuert G, Hendrick N et al (2012) Transcription of two long noncoding RNAs mediates mating-type control of gametogenesis in budding yeast. Cell 150(6):1170–1181

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hongay CF, Grisafi PL, Galitski T et al (2006) Antisense transcription controls cell fate in Saccharomyces cerevisiae. Cell 127(4):735–745

    Article  CAS  PubMed  Google Scholar 

  21. Gelfand B, Mead J, Bruning A et al (2011) Regulated antisense transcription controls expression of cell-type-specific genes in yeast. Mol Cell Biol 31(8):1701–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Camblong J, Beyrouthy N, Guffanti E et al (2009) Trans-acting antisense RNAs mediate transcriptional gene cosuppression in S. cerevisiae. Genes Dev 23(13):1534–1545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Camblong J, Iglesias N, Fickentscher C et al (2007) Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae. Cell 131(4):706–717

    Article  CAS  PubMed  Google Scholar 

  24. Nadal-Ribelles M, Sole C, Xu Z et al (2014) Control of Cdc28 CDK1 by a stress-induced lncRNA. Mol Cell 53(4):549–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ansari A, Hampsey M (2005) A role for the CPF 3′-end processing machinery in RNAP II-dependent gene looping. Genes Dev 19(24):2969–2978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lai F, Orom UA, Cesaroni M et al (2013) Activating RNAs associate with mediator to enhance chromatin architecture and transcription. Nature 494(7438):497–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Houseley J, Rubbi L, Grunstein M et al (2008) A ncRNA modulates histone modification and mRNA induction in the yeast GAL gene cluster. Mol Cell 32(5):685–695

    Article  CAS  PubMed  Google Scholar 

  28. Geisler S, Lojek L, Khalil AM et al (2012) Decapping of long noncoding RNAs regulates inducible genes. Mol Cell 45(3):279–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Castelnuovo M, Rahman S, Guffanti E et al (2013) Bimodal expression of PHO84 is modulated by early termination of antisense transcription. Nat Struct Mol Biol 20(7):851–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aravind L, Watanabe H, Lipman DJ et al (2000) Lineage-specific loss and divergence of functionally linked genes in eukaryotes. Proc Natl Acad Sci U S A 97(21):11319–11324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bumgarner SL, Neuert G, Voight BF et al (2012) Single-cell analysis reveals that noncoding RNAs contribute to clonal heterogeneity by modulating transcription factor recruitment. Mol Cell 45(4):470–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huber F, Bunina D, Gupta I et al (2016) Protein abundance control by non-coding antisense transcription. Cell Rep 15(12):2625–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leong HS, Dawson K, Wirth C et al (2014) A global non-coding RNA system modulates fission yeast protein levels in response to stress. Nat Commun 5:3947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Niederer RO, Papadopoulos N, Zappulla DC (2016) Identification of novel noncoding transcripts in telomerase-negative yeast using RNA-seq. Sci Rep 6:19376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Olovnikov AM (1973) A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41(1):181–190

    Article  CAS  PubMed  Google Scholar 

  36. Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43:405–413

    Article  CAS  PubMed  Google Scholar 

  37. Zappulla DC, Cech TR (2004) Yeast telomerase RNA: a flexible scaffold for protein subunits. Proc Natl Acad Sci U S A 101(27):10024–10029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mefford MA, Rafiq Q, Zappulla DC (2013) RNA connectivity requirements between conserved elements in the core of the yeast telomerase RNP. EMBO J 32(22):2980–2993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lebo KJ, Zappulla DC (2012) Stiffened yeast telomerase RNA supports RNP function in vitro and in vivo. RNA 18(9):1666–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zappulla DC, Goodrich KJ, Arthur JR et al (2011) Ku can contribute to telomere lengthening in yeast at multiple positions in the telomerase RNP. RNA 17(2):298–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zappulla DC, Cech TR (2006) RNA as a flexible scaffold for proteins: yeast telomerase and beyond. Cold Spring Harb Symp Quant Biol 71:217–224

    Article  CAS  PubMed  Google Scholar 

  42. Guttman M, Donaghey J, Carey BW et al (2011) lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477(7364):295–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Azzalin CM, Reichenbach P, Khoriauli L et al (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318(5851):798–801

    Article  CAS  PubMed  Google Scholar 

  44. Luke B, Panza A, Redon S et al (2008) The Rat1p 5′ to 3′ exonuclease degrades telomeric repeat-containing RNA and promotes telomere elongation in Saccharomyces cerevisiae. Mol Cell 32(4):465–477

    Article  CAS  PubMed  Google Scholar 

  45. Azzalin CM, Lingner J (2015) Telomere functions grounding on TERRA firma. Trends Cell Biol 25(1):29–36

    Article  CAS  PubMed  Google Scholar 

  46. Barthel FP, Wei W, Tang M et al (2017) Systematic analysis of telomere length and somatic alterations in 31 cancer types. Nat Genet 49(3):349–357

    Article  CAS  PubMed  Google Scholar 

  47. Nergadze SG, Farnung BO, Wischnewski H et al (2009) CpG-island promoters drive transcription of human telomeres. RNA 15(12):2186–2194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pfeiffer V, Lingner J (2012) TERRA promotes telomere shortening through exonuclease 1-mediated resection of chromosome ends. PLoS Genet 8(6):e1002747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Redon S, Reichenbach P, Lingner J (2010) The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res 38(17):5797–5806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schoeftner S, Blasco MA (2008) Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 10(2):228–236

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Zappulla Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Niederer, R.O., Hass, E.P., Zappulla, D.C. (2017). Long Noncoding RNAs in the Yeast S. cerevisiae . In: Rao, M. (eds) Long Non Coding RNA Biology. Advances in Experimental Medicine and Biology, vol 1008. Springer, Singapore. https://doi.org/10.1007/978-981-10-5203-3_4

Download citation

Publish with us

Policies and ethics