Skip to main content

Determination of Mitochondrial Function in Sperm Cells

  • Chapter
  • First Online:
Protocols in Semen Biology (Comparing Assays)

Abstract

With the advancement of science, detecting functionality of mitochondria has become one of the desirable parameters to evaluate sperm quality. This is further aided by availability of wide spectral range of fluorescent probes that has advantage of simultaneous multi-parametric assays. Apart from application of fluorescent probes, computer-assisted image analyzers can be used to assess mitochondrial functionality via motility attributes. In this chapter, we have attempted to describe evaluation of mitochondrial functional status using fluorescent dyes and thus have listed relative merits, protocols, and what to look for in the stained sperm sample. This important chapter also includes triple staining of sperm cells to elucidate integrity of acrosome, plasma membrane, and mitochondrial functions simultaneously. Additionally, procedure for flow cytometry of fluorescent-stained sperm cells as an objective method and tetrazolium (MTT) reduction assay as an easy, inexpensive, and rapid spectrophotometric protocol to determine mitochondrial function in spermatozoa is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatures Cited

  1. Hecht NB, Liem H, Kleene KC, Distel RJ, Ho SM (1984) Maternal inheritance of the mouse mitochondrial genome is not mediated by a loss or gross alteration of the paternal mitochondrial DNA or by methylation of the oocyte mitochondrial DNA. Dev Biol 102:452–461

    Article  CAS  PubMed  Google Scholar 

  2. Olson GE, Winfrey VP (1992) Structural organization of surface domains of sperm mitochondria. Mol Reprod Dev 33:89–98

    Article  CAS  PubMed  Google Scholar 

  3. Miki K, Qu W, Goulding EH, Willis WD, Bunch DO, Strader LF (2004) Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc Natl Acad Sci U S A 101:16501–16506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marin S, Chiang K, Bassilian S, Lee WN, Boros LG, Fernandez-Novell JM (2003) Metabolic strategy of boar spermatozoa revealed by a metabolomic characterization. FEBS Lett 554:342–346

    Article  CAS  PubMed  Google Scholar 

  5. Silva PF, Gadella BM (2006) Detection of damage in mammalian sperm cells. Theriogenology 65(5):958–978

    Article  CAS  PubMed  Google Scholar 

  6. Gadella BM, Harrison RA (2002) Capacitation induces cyclic adenosine 30, 50-monophosphate-dependent, but apoptosis-unrelated, exposure of aminophospholipids at the apical head plasma membrane of boar sperm cells. Biol Reprod 67:340–350

    Article  CAS  PubMed  Google Scholar 

  7. Terrell KA, Wildt DE, Anthony NM, Bavister BD, Leibo SP, Penfold LM (2012) Different patterns of metabolic cryo-damage in domestic cat (Felis catus) and cheetah (Acinonyx jubatus) spermatozoa. Cryobiology 64(2):110–117

    Article  CAS  PubMed  Google Scholar 

  8. Gravance CG, Garner DL, Baumber J, Ball BA (2000) Assessment of equine sperm mitochondrial function using JC-1. Theriogenology 53:1691–1703

    Article  CAS  PubMed  Google Scholar 

  9. Smiley ST, Reers M, Mottola-Hartshorn C, Lin M, Chen A, Smith TW, Steele GD, Chen LB (1991) Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Nat Acad Sci U S A 88:3671–3675

    Article  CAS  Google Scholar 

  10. Garner DL, Thomas CA, Joerg HW, DeJamette JM, Marshall CE (1997) Assessment of mitochondrial function and viability in cryopreserved bovine sperm. Biol Reprod 57:1401–1406

    Article  CAS  PubMed  Google Scholar 

  11. Rottenberg H, Wu S (1998) Quantitative assay by flow cytometry of the mitochondrial membrane potential in intact cells. Biochim Biophys Acta 1404:393–404

    Article  CAS  PubMed  Google Scholar 

  12. Johnson LV, Walsh ML, Chen LB (1980) Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci U S A 77:990–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fraser L, Zasiadczyk L, Strzezek J (2010) Interactions of egg yolk lipoprotein fraction with boar spermatozoa assessed with a fluorescent membrane probe. Folia Histochem Cytobiol 48(2):292–298

    Article  PubMed  Google Scholar 

  14. Cottet-Rousselle C, Ronot X, Leverve X, Mayol J (2011) Cytometric assessment of mitochondria using fluorescent probes. Cytometry A 79A:405–425

    Article  CAS  Google Scholar 

  15. Metivier D, Dallaporta B, Zamzami N, Larochette N, Susin SA, Marzo I, Kroemer G (1998) Cytofluorometric detection of mitochondrial alterations in early CD95/Fas/APO-1-triggered apoptosis of Jurkat T lymphoma cells. Comparison of seven mitochondrion-specific fluorochromes. Immunol Lett 61:157–163

    Article  CAS  PubMed  Google Scholar 

  16. Petit PX, O’Connor JE, Grunwald D, Brown SC (1990) Analysis of the membrane potential of rat- and mouse-liver mitochondria by flow cytometry and possible applications. Eur J Biochem 194:389–397

    Article  CAS  PubMed  Google Scholar 

  17. Gregory J (2002) Molecular Probes. Handbook of fluorescent probes and research products. Molecular Probes Inc, Eugene

    Google Scholar 

  18. Hallap T, Nagya S, Jaakmac U, Johannisson A, Rodriguez-Martinez H (2005) Mitochondrial activity of frozen-thawed spermatozoa assessed by MitoTracker® Deep Red 633. Theriogenology 63:2311–2322

    Article  CAS  PubMed  Google Scholar 

  19. Septinus M, Berthold T, Naujok A, Zimmermann HW (1985) Hydrophobic acridine dyes for fluorescent staining of mitochondria in living cells. 3. Specific accumulation of the fluorescent dye NAO on the mitochondrial membranes in HeLa cells by hydrophobic interactions. Depression of respiratory activity, changes in the ultrastructure of mitochondria due to NAO. Increase of fluorescence in vital stained mitochondria in situ by irradiation. Histochemistry 82:51–66

    Article  CAS  PubMed  Google Scholar 

  20. Septinus M, Seiffert W, Zimmermann HW (1983) Hydrophobic acridine dyes for fluorescence staining of mitochondria in living cells. 1. Thermodynamic and spectroscopic properties of 10-n-alkylacridine orange chlorides. Histochemistry 79:443–456

    Article  CAS  PubMed  Google Scholar 

  21. Maftah A, Petit JM, Julien R (1990) Specific interaction of the new fluorescent dye lo-N-nonyl acridine orange with inner mitochondrial membrane A lipid-mediated inhibition of oxidative phosphorylation. FEBS Lett 260(2):236–240

    Article  CAS  PubMed  Google Scholar 

  22. Cossarizza A, Baccarani-Contri M, Kalashnikova G, Franceschi C (1993) A new method for the flow cytometric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5′,6,6′-tetrachloro-l,l′,3,3′-tetraethylbenzimidazolyl carbocyanine iodide (JC-1). Biochem Biophys Res Commun 197:40–45

    Article  CAS  PubMed  Google Scholar 

  23. Ehrenberg B, Montana V, Wei MD, Wuskell JP, Loew LM (1988) Membrane potential can be determined in individual cells from the nernstian distribution of cationic dyes. Biophys J 53:785–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scaduto RC Jr, Grotyohann LW (1999) Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys J 76:469–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Farah OI, Cuiling L, Jiaojiao W, Huiping Z (2013) Use of fluorescent dyes for readily recognizing sperm damage. J Reprod Infertil 14(3):120–125

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Naser-Esfahani MH, Aboutorabi R, Esfandiari E, Mardani M (2002) Sperm MTT viability assay: a new method for evaluation of human sperm viability. J Assoc Reprod Genet 19:477–482

    Article  Google Scholar 

  27. Aziz DM (2006) Assessment of bovine sperm viability by MTT reduction assay. Anim Reprod Sci 92:1–8

    Article  CAS  PubMed  Google Scholar 

  28. Piccoli C, Boffoli D, Capitanio N (2004). Comparative analysis of mitochondria selective dyes in different cell types detected by Confocal Laser Scanning Microscopy: methods and applications. Current Issues on Multidisciplinary Microscopy Research and Education. FORMATEX 2004: 130–139. Internet download dated 20 July 2016

    Google Scholar 

  29. Ward CR, Storey BT (1984) Determination of the time course of capacitation in mouse spermatozoa using a chlortetracycline fluorescence assay. Dev Biol 104:287–296

    Article  CAS  PubMed  Google Scholar 

  30. Evenson DP, Darzynkiewicz Z, Malamed MR (1982) Simultaneous measurement by flow cytometry of sperm cell viability and mitochondrial membrane potential related to sperm motility. J Histochem Cytochem 30:279–280

    Article  CAS  PubMed  Google Scholar 

  31. Mukai C, Okuno M (2004) Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol Reprod 71:540–547

    Article  CAS  PubMed  Google Scholar 

  32. Troiano L, Granata AR, Cossarizza A, Kalashnikova G, Bianchi R, Pini G, Tropea F, Carani C, Franceschi C (1998) Mitochondrial membrane potential and DNA stainability in human sperm cells: a flow cytometry analysis with implications for male infertility. Exp Cell Res 241:384–393

    Article  CAS  PubMed  Google Scholar 

  33. Chen CS, Gee KR (2000) Redox-dependent trafficking of 2,3,4,5,6-Pentafluorodihydro tetramethylrosamine, a novel fluorogenic indicator of cellular oxidative activity. Free Radic Biol Med 28:1266–1278

    Article  CAS  PubMed  Google Scholar 

  34. Jelley EE (1937) Molecular, nematic and crystal states of 1: 1 ‘-diethyl-cp-cyanine chloride. Nature 139:631–632

    Article  CAS  Google Scholar 

  35. Celeghini ECC, Nascimento J, Andrade AFC, Raphael CF, Souza LWO, Arruda RP (2005) Use of CMXRos and JC-1 on mitochondrial function evaluation, associated to fluorescent probes to plasmatic and acrosomal membranes evaluation in bovine spermatozoa. Acta Sci Vet 33:321

    Google Scholar 

  36. Lange-Consiglio A, Meucci A, Cremonesi F (2013) Fluorescent multiple staining and CASA system to assess boar sperm viability and membranes integrity in short and long-term extenders. Open Vet J 3(1):21–35

    CAS  PubMed  PubMed Central  Google Scholar 

  37. MitoTracker® Mitochondrion-Selective Probes, E-booklet, Internet 19 July 2016. Molecular Probes, Invitrogen, Paisley

    Google Scholar 

  38. Slater TF, Swyer B, Strӓuli U (1963) Studies on succinate-tetrazolium reductase systems. III Points of coupling of four different tetrazolium salts. Biochim Biophys Acta 77:383–393

    Article  CAS  PubMed  Google Scholar 

  39. Denizot F, Lang R (1986) Rapid colorimetric assay for cell growth and survival. J Immunol Methods 89:271–277

    Article  CAS  PubMed  Google Scholar 

  40. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  41. Solaini G, Sgarbi G, Lenaz G, Baracca A (2007) Evaluating mitochondrial membrane potential in cells. Biosci Rep 27:11–21

    Article  CAS  PubMed  Google Scholar 

  42. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163

    Article  CAS  PubMed  Google Scholar 

  43. Batandier C, Fontaine E, Keriel C, Leverve XM (2002) Determination of mitochondrial reactive oxygen species: methodological aspects. J Cell Mol Med 6:175–187

    Article  CAS  PubMed  Google Scholar 

  44. Takahashi A, Zhang Y, Centonze E, Herman B (2001) Measurement of mitochondrial pH in situ. Biotechniques 30:804–808. 810,812 passim

    CAS  PubMed  Google Scholar 

  45. Keij JF, Bell-Prince C, Steinkamp JA (2000) Staining of mitochondrial membranes with 10-nonyl acridine orange, MitoFluor Green, and MitoTracker® Green is affected by mitochondrial membrane potential altering drugs. Cytometry 39:203–210

    Article  CAS  PubMed  Google Scholar 

  46. Poot M, Zhang YZ, Kramer JA, Wells KS, Jones LJ, Hanzel DK, Lugade AG, Singer VL, Haugland RP (1996) Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J Histochem Cytochem 44:1363–1372

    Article  CAS  PubMed  Google Scholar 

  47. Reers M, Smith TW, Chen LB (1991) J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 30:4480–4486

    Article  CAS  PubMed  Google Scholar 

  48. Bereiter-Hahn J (1990) Behavior of mitochondria in the living cell. Int Rev Cytol 122:1–63

    Article  CAS  PubMed  Google Scholar 

  49. Johnson LV, Walsh ML, Bockus BJ, Chen LB (1981) Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J Cell Biol 88:526–535

    Article  CAS  PubMed  Google Scholar 

  50. Michaelis L (1900) Die vitale Farbung, eine Darstellungsmethode d. Zell-granula. Arch f miki Anat 55:558–575

    Article  Google Scholar 

  51. Nicholls DG, Ward MW (2000) Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci 23:166–174

    Article  CAS  PubMed  Google Scholar 

  52. Lemasters JJ, Ramshesh VK (2007) Imaging of mitochondrial polarization and depolarization with cationic fluorophores. Methods Cell Biol 80:283–295

    Article  CAS  PubMed  Google Scholar 

  53. Gravance CG, Garner DL, Miller G, Berger T (2001) Fluorescent probes and flow cytometry to assess rat sperm integrity and mitochondrial function. Reprod Toxicol 15(1):5–10

    Article  CAS  PubMed  Google Scholar 

Key References

  1. Cottet-Rousselle and co-workers, 2011. See above [14] In-depth discussion and excellent background information related to application of fluorescent probes for detection of mitochondrial activity in a cell population

    Google Scholar 

  2. Piccoti et al. (2004). See above [28] Provides comparative merits/demerits of some of the fluorescent dyes used in the evaluation of mitochondrial activity

    Google Scholar 

  3. Celeghini and others (2005) [35] and Lange-Consiglio and co-workers (2013). See above [36]. Contains a detailed alternate procedure for triple staining of sperm cells for simultaneous evaluation of plasma, acrosome integrity and mitochondrial function without intervening process of washing

    Google Scholar 

  4. Aziz (2006). See above [27] Describes MTT reduction assay to evaluate mitochondrial function

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Srivastava, N., Pande, M. (2017). Determination of Mitochondrial Function in Sperm Cells. In: Srivastava, N., Pande, M. (eds) Protocols in Semen Biology (Comparing Assays). Springer, Singapore. https://doi.org/10.1007/978-981-10-5200-2_13

Download citation

Publish with us

Policies and ethics