Skip to main content

Estimating Metabolic Activity of Spermatozoa

  • Chapter
  • First Online:
Protocols in Semen Biology (Comparing Assays)
  • 850 Accesses

Abstract

The motility of live spermatozoa indicating energy requirement and thus presence of intrinsic metabolic pathways in the cell has led researchers to speculate relationship of sperm metabolism with semen quality parameters. Over the period, many assays, some quantitative and some qualitative, to estimate metabolic aspects of sperm life have been developed. Investigators have reported significant relationship of metabolic assays with that of sperm concentrations and motility. Moreover, a significant relationship of resazurin reduction assay with that of oxidative stress of spermatozoa has also been reported recently. This chapter outlines principle and procedures involved in various assays employed for estimating metabolic rates of bovine spermatozoa. Modification of resazurin assay to objectively measure colour changes using spectrophotometer and, in fructose estimation, protocols to evaluate metabolic rates in sperm suspension and frozen-thawed samples have been included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  1. Mann T (1945) Studies on the metabolism of semen: 2. Glycolysis in spermatozoa. Biochem J 39(5):458–465

    Article  CAS  PubMed Central  Google Scholar 

  2. Harrison RAP (1977) The metabolism of mammalian spermatozoa. In: Greep RO, Koblinsky MA (eds) Frontiers in reproduction and fertility control. MIT Press, Cambridge, pp 379–407

    Google Scholar 

  3. Mann T (1959) Sperm metabolism. In: Metz CB, Monroy A (eds) Fertilization: comparative morphology, biochemistry, and immunology, vol 1. Academic Press, New York, p 114

    Google Scholar 

  4. Bedford JM, Hoskins DD (1990) In: Lamming GE (ed) Marshall’s physiology of reproduction, vol 2. Churchill Livingstone, Edinburg, p 379

    Google Scholar 

  5. Salisbury GW, VanDemark NL, Lodge JR (1985) Physiology of reproduction and artificial insemination of cattle, 2nd edn. WH Freeman and Company, San Francisco, pp 268–274

    Google Scholar 

  6. Salisbury GW, Adkiey WC (1957) Factors influencing metabolic activity of bull spermatozoa. J Dairy Sci 40:1343

    Article  CAS  Google Scholar 

  7. Salisbury GW, Graves CN, Nakabayashi NT, Cragle RG (1963) Observations on the aerobic metabolism of bull and goat epididymal spermatozoa. J Reprod Fertil 6:341–349

    Article  CAS  PubMed  Google Scholar 

  8. Beck GH, Salisbury GW (1943) Rapid methods for estimating the quality of bull semen. J Dairy Sci 26:483–494

    Article  Google Scholar 

  9. Chandler JE (1976) The nature of serum agglutination of bovine spermatozoa: a proposed mode of action and its metabolic effects. PhD Dissertation, Virginia Polytechnic Institute and State University, Blacksburg

    Google Scholar 

  10. Witters WL, Foley CW (1976) Effect of selected inhibitors and methylene blue on a possible phosphogluconate pathway in washed boar semen. J Anim Sci 43:159–167

    Article  CAS  PubMed  Google Scholar 

  11. Gassner FX, Hill HJ, Sulzberger L (1952) Relationship of seminal fructose to testis function in the domestic animal. Fertil Steril 3(2):121

    Article  CAS  PubMed  Google Scholar 

  12. Bishop M, Campbell RC, Hancock J, Walton A (1954) Semen characteristics and fertility in the bull. J Agric Sci 44:227

    Article  Google Scholar 

  13. Branton C, James CB, Patrick TE, Newsom MH (1951) The relationship between certain semen quality tests and fertility and the interrelationship of these tests. J Dairy Sci 34:310–316

    Article  Google Scholar 

  14. Chandler JE, Harrison CM, Canal AM (2000) Spermatozoal methylene blue reduction: an indicator of mitochondrial function and its correlation with motility. Theriogenology 54:261–271

    Article  CAS  PubMed  Google Scholar 

  15. Martin LM, Crenshaw CC, Dean JA Jr, Dart MG, Purdy PH, Ericsson SA (1998) Determination of the number of motile sperm within an ovine semen sample using resazurin. Small Ruminant Res 32:161–165

    Article  Google Scholar 

  16. Zalata A, Hafez T, Mahmoud A, Comhaire F (1995) Relationship between resazurin reduction test, reactive oxygen species generation, and c-glutamyltransferase. Hum Reprod 10:1136–1140

    Article  CAS  PubMed  Google Scholar 

  17. Reddy KVR, Bordekar AD (1999) Spectrophotometric analysis of resazurin reduction test and semen quality in men. J Expt Biol 37:782–786

    CAS  Google Scholar 

  18. Dart MG, Mesta J, Crenshaw C, Ericsson SA (1994) Modified resazurin reduction test for determining the fertility potential of bovine spermatozoa. Arch Andro 33:71

    Article  CAS  Google Scholar 

  19. Lu J, Chen F, Xu H, Huang Y, Lu N (2007) Standardization and quality control for determination of fructose in seminal plasma. J Androl 28(2):207–213

    Article  CAS  PubMed  Google Scholar 

  20. Barakat MZ, El-Sawaf E (1964) The determination of semen fructose. Microchem J 98(2):123–130

    Article  Google Scholar 

  21. Huang YF, Xu RJ (eds) (1999) Nan Ke Zhen Duan Xue [in Chinese]. Shanghai 2nd Military Medical University Press, Shanghai, pp 219–221

    Google Scholar 

  22. Anderson RA Jr, Reddy JM, Oswald C, Zaneveld LJD (1979) Enzymic determination of fructose in seminal plasma by initial rate analysis. Clin Chem 25(10):1780–1782

    CAS  PubMed  Google Scholar 

  23. WHO laboratory manual for the examination and processing of human semen, 5th edn, World Health Organization, 2010

    Google Scholar 

  24. Lewin LM, Beer MS, Lunenfeld B (1977) Paper chromatographic estimation of fructose and myo-inositol in human seminal fluid: a method for evaluating seminal vesicle and prostatic function. Intl J Fertil 22:48–51

    CAS  Google Scholar 

  25. Cicero TJ, Bell RD, Wiest WG (1975) Function of the male sex organs in heroin and methadone users. N Engl J Med 292:882–887

    Article  CAS  PubMed  Google Scholar 

  26. Córdoba M, Mora N, Beconi MT (2006) Respiratory burst and NAD(P)H oxidase activity are involved in capacitation of cryopreserved bovine spermatozoa. Theriogenology 4:882–892

    Article  Google Scholar 

  27. Melrose DR, Terner C (1953) The metabolism of pyruvate in bull spermatozoa. Biochem J 53(2):296–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Erb RE, Ehlers FH (1950) Resazurin reducing times as an indicator of bovine semen fertilizing capacity. J Dairy Sci 32:853

    Article  Google Scholar 

  29. Montagnon D, Valtat B, Vignon F, Koll-Back MH (1990) Secretory proteins of human seminal vesicles and their relationship to lipids and sugars. Andrologia 22:193–205

    Article  CAS  PubMed  Google Scholar 

  30. Mann T (1964) The biochemistry of semen and the male reproductive tract. Methuen and Co, London, pp 37–69. 237–254

    Google Scholar 

  31. Bhosrekar MR (1990) Semen production and artificial insemination. Ajay Offset, Pune

    Google Scholar 

  32. Gassner FX, Hill HJ (1952) Correlation of fructose content of semen and rate of fructolysis to breeding efficiency of bulls. Proceeding of the second international congress of physiology and pathology of animal reproduction and of artificial insemination II: 62

    Google Scholar 

  33. Abdou MSS, El-Guindi MM, El-Menoufy AA, Zaki K (1977) Some biochemical and metabolic aspects of the semen of bovines (Bubalus bubalis and Bos Taurus). Z Tierzucgtg Zuchtgsbiol 95:16–26

    Google Scholar 

  34. Moon KH, Bunge RG (1971) Seminal fructose as an indicator of androgenic activity: critical analysis. Investig Urol 8:373–376

    CAS  Google Scholar 

  35. Kise H, Nishioka J, Satoh K, Okuno T, Kawamura J, Suzuki K (2000) Measurement of protein C inhibitor in seminal plasma is useful for detecting agenesis of seminal vesicles or the vas deferens. J Androl 21:207–212

    CAS  PubMed  Google Scholar 

  36. Kumar R, Thulkar S, Kumar V, Jagannathan NR, Gupta NP (2005) Contribution of investigations to the diagnosis of bilateral vas aplasia. ANZ J Surg 75:807–809

    Article  PubMed  Google Scholar 

  37. Manivannan B, Bhande SS, Panneerdoss S, Sriram S, Lohiya NK (2005) Safety evaluation of long-term vas occlusion with styrene maleic anhydride and its non-invasive reversal on accessory reproductive organs in langurs. Asian J Androl 7:195–204

    Article  CAS  PubMed  Google Scholar 

  38. Carpino A, De Sanctis V, Siciliano L, Maggiolini M, Vivacqua A, Pinamonti A, Sisci D, Ando S (1997) Epididymal and sex accessory gland secretions in transfusion-dependent beta-thalassemic patients: evidence of an impaired prostatic function. Exp Clin Endocrinol Diabetes 105:169–174

    Article  CAS  PubMed  Google Scholar 

  39. Buckett WM, Lewis-Jones DI (2002) Fructose concentrations in seminal plasma from men with nonobstructive azoospermia. Arch Androl 48:23–27

    Article  CAS  PubMed  Google Scholar 

  40. Tan ZH, Jin SH, Li N (eds) (2005) Basic organic chemistry [in Chinese]. Science and Technology Literature Press, Beijing, p 538

    Google Scholar 

  41. Mann T (1948) Fructose content and fructolysis in semen. Practical application in the evaluation of semen quality. J Agr Sci 38:323

    Article  CAS  Google Scholar 

  42. Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton CJ, Kieser H, Lydiate DJ, Smith CP, Ward JM, Schrempf H (1985) Genetic manipulation of Streptomyces. A Laboratory Manual. The John Innes Foundation, Norwich

    Google Scholar 

  43. Rui H, Morkas L, Purvis K (1986) Time- and temperature-related alterations in seminal plasma constituents after ejaculation. Int J Androl 9:195–200

    Article  CAS  PubMed  Google Scholar 

  44. Srivastava AK (2008) Chromatography of sugars using standard mixtures. In: Saini M (ed) A practical manual of analytical biochemistry. Anupam Press, Bareilly, pp 27–29

    Google Scholar 

  45. Consden R, Gordon AH, Martin AJD (1944) Qualitative analysis of proteins: a partition chromatographic method using paper. Biochem J 38:224–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Partridge SM (1948) Filter-paper partition chromatography of sugars. Biochem J 42:238

    Article  CAS  PubMed Central  Google Scholar 

  47. Terner C (1957) Effect of nitrophenols on the metabolism of spermatozoa. Federation Proc 16:261

    Google Scholar 

  48. Terner C (1959) The Effect of 2,4-Dinitrophenol and p-Nitrophenol on the aerobic and anaerobic metabolism of bull spermatozoa. Biochlm et Biophys Acta 36:479

    Article  CAS  Google Scholar 

  49. Clifton CE (1952) In: Sumner JB, Myrback K (eds) The Enzymes, 2(2) Academic Press, New York

    Google Scholar 

  50. Nakano H (1930) Med Akad Zu Kyoto 4:174–198

    Google Scholar 

  51. Twigg RS (1945) Oxidation-reduction aspects of resazurin. Nature 155:401–402

    Article  CAS  Google Scholar 

  52. Glass RH, Drouin MT, Ericsson SA, Marcoux LJ, Ericsson RJ, Sullivan H (1991) The resazurin reduction test provides an assessment of sperm activity. Fertil Steril 56:743–746

    Article  CAS  PubMed  Google Scholar 

  53. Mesta J, Ericsson SA, Dart MG, Wansley RG, Weyerts PR (1995) Assessment of fertility potential of porcine spermatozoa using the reducible dyes methylene green and resazurin. J Anim Sci 73(Suppl. 1):26

    Google Scholar 

  54. Carter RA, Ericsson SA (1998) Assessing the fertility potential of equine semen samples using the reducible dyes methylene green and resazurin. Archives Androl 40:59–66

    Article  CAS  Google Scholar 

  55. Zrimsek P, Kunc J, Kosec M, Mrkun J (2004) Spectrophotometric application of resazurin reduction assay to evaluate boar semen quality. Intl J Androl 27:57–62

    Article  CAS  Google Scholar 

  56. El-Battaway KA (2008) Resazurin reduction test as a tool for assessment of rabbit semen quality. 9th world rabbit congress, June 10–13, Verona

    Google Scholar 

  57. Fernandez S, Cordoba M (2016) Progesterone causes metabolic changes involving aminotransferases and creatine kinase in cryopreserved bovine spermatozoa. Anim Reprod Sci 164:90–96

    Article  CAS  PubMed  Google Scholar 

Key References

  1. Salisbury and others. See above [5] In-depth discussion and excellent background information related to physiology of sperm metabolism and application of various assays in determining sperm metabolism

    Google Scholar 

  2. Zalata et al. See above [16] Pointed out relationship of resazurin reduction rate with oxidative stress of spermatozoa

    Google Scholar 

  3. Lu and co-workers. See above [19] Described in detail assay to determine seminal fructose concentration and in sperm suspension, and need to stabilize the standard fructose solution prepared in water

    Google Scholar 

  4. Anderson and co-workers. See above [22] This group of researchers have provided in-depth discussion of enzymatic assay to determine sperm metabolism, with stepwise description of related protocol

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Srivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Srivastava, N., Pande, M. (2017). Estimating Metabolic Activity of Spermatozoa. In: Srivastava, N., Pande, M. (eds) Protocols in Semen Biology (Comparing Assays). Springer, Singapore. https://doi.org/10.1007/978-981-10-5200-2_10

Download citation

Publish with us

Policies and ethics