Skip to main content

Rectilinear Floor Plans

  • Conference paper
  • First Online:
Computer-Aided Architectural Design. Future Trajectories (CAADFutures 2017)

Abstract

This work aims at providing a mathematical approach to the problem of allocating given rooms within a given predefined contour shape, while satisfying given adjacency and size constraints. This work is significant with respect to complex building structures, such as hospitals, schools, offices, etc., where we may require floor plans other than rectangular ones and adjacency constraints are defined by the frequency of journeys expected to be made by occupants of the building along different routes. In this paper, we present an algorithmic approach using graph theoretical tools for generating rectilinear floor plan layouts, while satisfying adjacency and size constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rinsma, I.: Existence theorems for floorplans (thesis). University of Canterbury (1987)

    Google Scholar 

  2. Roth, J., Hashimshony, R., Wachman, A.: Turning a graph into a rectangular floor plan. Build. Environ. 17(3), 163–173 (1982)

    Article  Google Scholar 

  3. Shaviv, E., Gali, D.: A model for space allocation in complex buildings: a computer graphics approach. In: Build International, pp. 493–517. Applied Science Publisher Ltd., England (1974)

    Google Scholar 

  4. Mitchell, W.: The theoretical foundation of computer-aided architectural design. Environ. Plan. B 2(2), 127–150 (1975)

    Article  Google Scholar 

  5. Kalay, Y.: The impact of information technology on design methods, products and practices. Des. Stud. 27(3), 357–380 (2006)

    Article  Google Scholar 

  6. Baybars, I., Eastman, C.M.: Enumerating architectural arrangements by generating their underlying graphs. Environ. Plan. B 7, 289–310 (1980)

    Article  Google Scholar 

  7. Steadman, J.P.: Graph theoretic representation of architectural arrangement. Architect. Res. Teach. 2(3), 161–172 (1973)

    Google Scholar 

  8. Galle, P.: An algorithm for exhaustive generation of building floor plans. Commun. ACM 24(12), 813–825 (1981)

    Article  Google Scholar 

  9. Levin, P.H.: Use of graphs to decide the optimum layout of buildings. Archit. J. 140(15), 809–817 (1964)

    Google Scholar 

  10. Cousin, J.: Topological organization of architectural spaces. Architectural Des. 40, 491–493 (1970)

    Google Scholar 

  11. Grason, J.: A dual linear representation for space filling location problems of the floorplan type. In: Moore, G.T. (ed.) Emerging Methods of Environmental Design and Planning, pp. 170–178. MIT Press, Cambridge (1970)

    Google Scholar 

  12. Teague, L.: Network models of configurations of rectangular parallelepipeds. In: Moore, G.T. (ed.) Emerging Methods in Environmental Design and Planning. MIT Press, Cambridge (1970)

    Google Scholar 

  13. Combes, L.: Packing rectangles into rectangular arrangements. Environ. Plan. B 3, 3–32 (1976)

    Article  Google Scholar 

  14. Lynes, J.A.: Windows and floor plans. Environ. Plan. B 4, 51–55 (1977)

    Article  Google Scholar 

  15. Hashimshony, R., Shaviv, E., Wachman, A.: Transforming an adjacency matrix into a planar graph. Build. Environ. 15, 205–217 (1980)

    Article  Google Scholar 

  16. Roth, J., Wachman, A.: A model for optimal compact packing of convex cells in an Orthogonal network. Technion-I.I.T, Faculty of Architecture and Town Planning, Haifa (1978)

    Google Scholar 

  17. Radcliffe, P.E., Kawal, D.E., Stephenson, R.J.: Critical Path Method, vol. III. Cahner, Chicago (1967)

    Google Scholar 

  18. Baybars, I.: The generation of floor plans with circulation spaces. Environ. Plan. B 9, 445–456 (1982)

    Article  Google Scholar 

  19. Robinson, D.F., Janjic, I.: The constructability of floorplans with certain given outerplanar adjacency graph and room areas. In: Proceedings Xth British Combinatorics Conference, Ars Combinatoria 20B, pp. 133–142 (1985)

    Google Scholar 

  20. Rinsma, I.: Nonexistence of a certain rectangular floorplan with specified areas and adjacency. Environ. Plan. 14, 163–166 (1987)

    Article  Google Scholar 

  21. Rinsma, I.: Rectangular and orthogonal floorplans with required room areas and tree adjacency. Environ. Plan. 15, 111–118 (1988)

    Article  MathSciNet  Google Scholar 

  22. Irvine, S.A., Rinsma-Melchert, I.: A new approach to the block layout problem. Int. J. Prod. Res. 35(8), 2359–2376 (1997)

    Article  MATH  Google Scholar 

  23. Recuero, A., Rio, O., Alvarez, M.: Heuristic method to check the realisability of a graph into a rectangular plan. Adv. Eng. Softw. 31, 223–231 (2000)

    Article  MATH  Google Scholar 

  24. Marson F., Musse S.R.: Automatic real-time generation of floor plans based on squarified treemaps algorithm. Int. J. Comput. Games Technol. (2014)

    Google Scholar 

  25. Alvarez, M., Rio, O., Recuero, A., Romero, M.S.: AD2D: a tool for a automatic drawing of a-dimensional 2D floor plan. Informes de la Construccion 63(524), 83–99 (2011)

    Article  Google Scholar 

  26. Regateiro, F., Bento, J., Dias, J.: Floor plan design using block algebra and constraint satisfaction. Adv. Eng. Inform. 26, 361–382 (2012)

    Article  Google Scholar 

  27. Kotulski, L., Strug, B.: Supporting communication and cooperation in distributed representation for adaptive design. Adv. Eng. Inform. 27, 220–229 (2013)

    Article  Google Scholar 

  28. Earl, C.F., March, L.J.: Architectural applications of graph theory. In: Wilson, R.J., Beineke, L.W. (eds.) Applications of Graph Theory, pp. 327–355. Academic Press, London (1979)

    Google Scholar 

  29. Shekhawat, K.: Why golden rectangle is used so often by architects: a mathematical approach. Alexandria Eng. J. 54, 213–222 (2015)

    Article  Google Scholar 

  30. Shekhawat, K.: Mathematical propositions associated with the connectivity of architectural designs. Ain Shams Eng. J. (2015) (In press). doi:10.1016/j.asej.2015.09.009

Download references

Acknowledgement

This research has been supported by Research Initiation Grant (Grant number 77), Birla Institute of Technology & Science, Pilani, Pilani Campus, 333031 and by the Stuckeman Center for Design Computing at Penn State.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnendra Shekhawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Shekhawat, K., Duarte, J.P. (2017). Rectilinear Floor Plans. In: Çağdaş, G., Özkar, M., Gül, L., Gürer, E. (eds) Computer-Aided Architectural Design. Future Trajectories. CAADFutures 2017. Communications in Computer and Information Science, vol 724. Springer, Singapore. https://doi.org/10.1007/978-981-10-5197-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5197-5_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5196-8

  • Online ISBN: 978-981-10-5197-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics