Application of Nanoseparation in Reaction Mechanism Analysis

  • Zhao Cai
  • Xiaohan Qi
  • Yun Kuang
  • Qian Zhang
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


Density gradient centrifugation has been established to obtain monodisperse nanoparticles with strictly uniform size and morphology, which are usually hard to be obtained by synthetic optimization. Previous chapters have demonstrated the versatility and universality of such separation method, by which nearly all kinds of nanostructures can be separated, including particles, clusters, and assemblies. Further, reaction mechanism, as well as structure–property relationship, can also be investigated based on the separated fractions. The focus of this chapter is the reaction mechanism analysis using density gradient centrifugation, namely by introducing a distinctive functional gradient layer, such as reaction zone and assembly zone, reaction mechanisms can be therefore studied since the reaction time can be pre-designed and the reaction environment can be switched extremely fast in a centrifugal force field. In a word, “lab in a tube” based on nanoseparation opens a new door for the investigation of synthetic optimization, assembly behavior, and surface reaction of various nanostructures.


Lab in a tube Reaction zone Assembly zone Growth mechanism Ultraconcentration 


  1. 1.
    Duan R, Zuo X, Wang S et al (2013) Lab in a tube: ultrasensitive detection of microRNAs at the single-cell level and in breast cancer patients using quadratic isothermal amplification. J Am Chem Soc 135(12):4604–4607CrossRefGoogle Scholar
  2. 2.
    Smith EJ, Schulze S, Kiravittaya S et al (2010) Lab-in-a-tube: detection of individual mouse cells for analysis in flexible split-wall microtube resonator sensors. Nano Lett 11(10):4037–4042CrossRefGoogle Scholar
  3. 3.
    Harazim SM, Quiñones VAB, Kiravittaya S et al (2012) Lab-in-a-tube: on-chip integration of glass optofluidic ring resonators for label-free sensing applications. Lab Chip 12(15):2649–2655CrossRefGoogle Scholar
  4. 4.
    Zhang C, Luo L, Luo J et al (2012) A process-analysis microsystem based on density gradient centrifugation and its application in the study of the galvanic replacement mechanism of Ag nanoplates with HAuCl4. Chem Commun 48(58):7241–7243CrossRefGoogle Scholar
  5. 5.
    Liu C, Fan Y, Liu M et al (1999) Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286(5442):1127–1129CrossRefGoogle Scholar
  6. 6.
    Odom TW, Huang J-L, Kim P et al (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391(6662):62–64CrossRefGoogle Scholar
  7. 7.
    Bachilo SM, Strano MS, Kittrell C et al (2002) Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298(5602):2361–2366CrossRefGoogle Scholar
  8. 8.
    Sun X, Zaric S, Daranciang D et al (2008) Optical properties of ultrashort semiconducting single-walled carbon nanotube capsules down to sub-10 nm. J Am Chem Soc 130(20):6551–6555CrossRefGoogle Scholar
  9. 9.
    Murray C, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715CrossRefGoogle Scholar
  10. 10.
    Bai L, Ma X, Liu J, Sun X et al (2010) Rapid separation and purification of nanoparticles in organic density gradients. J Am Chem Soc 132(7):2333–2337CrossRefGoogle Scholar
  11. 11.
    Ma X, Kuang Y, Bai L et al (2011) Experimental and mathematical modeling studies of the separation of zinc blende and wurtzite phases of CdS nanorods by density gradient ultracentrifugation. ACS Nano 5(4):3242–3249CrossRefGoogle Scholar
  12. 12.
    Zhang G, He P, Ma X et al (2012) Understanding the “Tailoring Synthesis” of CdS nanorods by O2. Inorg Chem 51(3):1302–1308CrossRefGoogle Scholar
  13. 13.
    Sun X, Ma X, Bai L et al (2011) Nanoseparation-inspired manipulation of the synthesis of CdS nanorods. Nano Res 4(2):226–232CrossRefGoogle Scholar
  14. 14.
    Song S, Kuang Y, Liu J et al (2013) Separation and phase transition investigation of Yb 3 +/Er 3 + co-doped NaYF4 nanoparticles. Dalton T 42(37):13315–13318CrossRefGoogle Scholar
  15. 15.
    Chatterjee D, Deutschmann O, Warnatz J (2002) Detailed surface reaction mechanism in a three-way catalyst. Faraday Discuss 119:371–384CrossRefGoogle Scholar
  16. 16.
    Long R, Yang R (2002) Reaction mechanism of selective catalytic reduction of NO with NH3 over Fe–ZSM-5 catalyst. J Catal 207(2):224–231CrossRefGoogle Scholar
  17. 17.
    Koop J, Deutschmann O (2009) Detailed surface reaction mechanism for Pt-catalyzed abatement of automotive exhaust gases. Appl Catal B Environ 91(1):47–58CrossRefGoogle Scholar
  18. 18.
    Chen G, Wang Y, Yang M et al (2010) Measuring ensemble-averaged surface-enhanced Raman scattering in the hotspots of colloidal nanoparticle dimers and trimers. J Am Chem Soc 132(11):3644–3645CrossRefGoogle Scholar
  19. 19.
    Urban AS, Shen X, Wang Y et al (2013) Three-dimensional plasmonic nanoclusters. Nano Lett 13(9):4399–4403CrossRefGoogle Scholar
  20. 20.
    Qi X, Li M, Kuang Y et al (2015) Controllable assembly and separation of colloidal nanoparticles through a one-tube synthesis based on density gradient centrifugation. Chem Eur J 21(19):7211–7216CrossRefGoogle Scholar
  21. 21.
    Song S, Kuang Y, Luo L et al (2014) Asymmetric hetero-assembly of colloidal nanoparticles through “crash reaction” in a centrifugal field. Dalton Trans 43(16):5994–5997CrossRefGoogle Scholar
  22. 22.
    Kuang Y, Song S, Liu X et al (2014) Solvent switching and purification of colloidal nanoparticles through water/oil Interfaces within a density gradient. Nano Res 7(11):1670–1679CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Zhao Cai
    • 1
  • Xiaohan Qi
    • 1
  • Yun Kuang
    • 1
  • Qian Zhang
    • 1
  1. 1.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations