Density Gradient Ultracentrifugation of Colloidal Nanostructures

  • Liang Luo
  • Qixian Xie
  • Yinglan Liu
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


According to the centrifugation theory, various factors, such as the media density (ρm), radius (r) and thickness (h) of nanostructures, and solvation shell thickness (t) in different media, will directly influence the particle behavior during the density gradient centrifugation process. Density gradient centrifugation has become a promising tool to purify nanomaterials, such as metal nanostructures, carbon materials (carbon nanotubes and graphene), non-metal nanostructures (e.g., rare-earth nanostructures and oxide nanostructures). For the practical separation, as demonstrated in previous chapters, on the basis of the theoretical analysis of the target nanostructures and the preliminary separation, one can optimize the centrifugation according to the comprehensive consideration. While after all, the optimization direction of nanoseparation should be mainly focused on the net density of nanostructures and media. In this chapter, we will discuss the separation examples according to the dimensional difference of colloidal nanostructures, including 0D, 1D, 2D nanostructures, and assemblies/clusters.


Zero dimensional One dimensional Two dimensional Assemblies Clusters 


  1. 1.
    Sun X, Tabakman SM, Seo WS et al (2009) Separation of nanoparticles in a density gradient: FeCo@C and gold nanocrystals. Angew Chem Int Edit 48 (5):939–942CrossRefGoogle Scholar
  2. 2.
    Akbulut O, Mace CR, Martinez RV et al (2012) Separation of nanoparticles in aqueous multiphase systems through centrifugation. Nano Lett 12(8):4060–4064CrossRefGoogle Scholar
  3. 3.
    Peng W, Mahfouz R, Pan J et al (2013) Gram-scale fractionation of nanodiamonds by density gradient ultracentrifugation. Nanoscale 5(11):5017–5026CrossRefGoogle Scholar
  4. 4.
    Bai L, Ma X, Liu J et al (2010) Rapid separation and purification of nanoparticles in organic density gradients. J Am Chem Soc 132(7):2333–2337CrossRefGoogle Scholar
  5. 5.
    Hu C, Chen Y (2015) Uniformization of silica particles by theory directed rate-zonal centrifugation to build high quality photonic crystals. Chem Eng J 271:128–134CrossRefGoogle Scholar
  6. 6.
    Mastronardi ML, Hennrich F, Henderson EJ et al (2011) Preparation of monodisperse silicon nanocrystals using density gradient ultracentrifugation. J Am Chem Soc 133(31):11928–11931CrossRefGoogle Scholar
  7. 7.
    Ma X, Kuang Y, Bai L et al (2011) Experimental and mathematical modeling studies of the separation of zinc blende and wurtzite phases of CdS nanorods by density gradient ultracentrifugation. ACS Nano 5(4):3242–3249CrossRefGoogle Scholar
  8. 8.
    Li S, Chang Z, Liu J et al (2011) Separation of gold nanorods using density gradient ultracentrifugation. Nano Res 4(8):723–728CrossRefGoogle Scholar
  9. 9.
    Xiong B, Cheng J, Qiao Y et al (2011) Separation of nanorods by density gradient centrifugation. J Chromatogr A 1218(25):3823–3829CrossRefGoogle Scholar
  10. 10.
    Dong S, Wang Y, Tu Y et al (2016) Separation of gold nanorods by viscosity gradient centrifugation. Microchim Acta 183(3):1269–1273CrossRefGoogle Scholar
  11. 11.
    Arnold MS, Stupp SI, Hersam MC (2005) Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett 5(4):713–718CrossRefGoogle Scholar
  12. 12.
    Green AA, Hersam MC (2008) Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. Nano Lett 8(5):1417–1422CrossRefGoogle Scholar
  13. 13.
    Arnold MS, Green AA, Hulvat JF et al (2006) Sorting carbon nanotubes by electronic structure using density differentiation. Nat Nanotechnol 1(1):60–65CrossRefGoogle Scholar
  14. 14.
    Green AA, Hersam MC (2009) Processing and properties of highly enriched double-wall carbon nanotubes. Nat Nanotechnol 4(1):64–70CrossRefGoogle Scholar
  15. 15.
    Green AA, Hersam MC (2009) Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett 9(12):4031–4036CrossRefGoogle Scholar
  16. 16.
    Sun X, Liu Z, Welsher K et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1(3):203–212CrossRefGoogle Scholar
  17. 17.
    Sun X, Luo D, Liu J et al (2010) Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation. ACS Nano 4(6):3381–3389CrossRefGoogle Scholar
  18. 18.
    Agrawal KV, Topuz B, Jiang Z et al (2013) Solution-processable exfoliated zeolite nanosheets purified by density gradient centrifugation. AIChE J 59(9):3458–3467CrossRefGoogle Scholar
  19. 19.
    Kang J, Sangwan VK, Wood JD et al (2016) Layer-by-layer sorting of rhenium disulfide via high-density isopycnic density gradient ultracentrifugation. Nano Lett 16(11):7216–7223. Scholar
  20. 20.
    Chen G, Wang Y, Tan LH et al (2009) High-purity separation of gold nanoparticle dimers and trimers. J Am Chem Soc 131(12):4218–4219CrossRefGoogle Scholar
  21. 21.
    Chen G, Wang Y, Yang M et al (2010) Measuring ensemble-averaged surface-enhanced raman scattering in the hotspots of colloidal nanoparticle dimers and trimers. J Am Chem Soc 132(11):3644–3645CrossRefGoogle Scholar
  22. 22.
    Deng L, Wang X, Kuang Y et al (2015) Development of hydrophilicity gradient ultracentrifugation method for photoluminescence investigation of separated non-sedimental carbon dots. Nano Res 8(9):2810–2821CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Liang Luo
    • 1
  • Qixian Xie
    • 1
  • Yinglan Liu
    • 1
  1. 1.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations