Skip to main content

Density Gradient Ultracentrifugation Technique

  • Chapter
  • First Online:
Nanoseparation Using Density Gradient Ultracentrifugation

Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMOLECULAR))

Abstract

As a general, non-destructive, and scalable separation method, DGUC has recently been demonstrated as an efficient way of sorting colloidal nanoparticles according to their differences in chemical, structural, size, or morphology. After the introduction of basic concepts of density gradient ultracentrifugation, for the practical applications, there are various parameters to be considered. Nanoparticles will have different movement ways in different separation systems. In principle, particle movement characteristic in liquid media not only depends on the centrifugal force but also relies on the density, size, and shape of particle and the density and viscosity of the liquid medium and so on, while the gravity and intermolecular force can be ignored. In this chapter, typical parameters such as choice of gradient media, density gradient, rotor type, centrifugation speed, and time will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sartory WK (1970) Fractional cleanout in a continuous-flow centrifuge. Sep Sci Technol 5(2):137–143

    CAS  Google Scholar 

  2. Perardi TE, Leffler RAA, Anderson NG (1969) K-series centrifuges II. Performance of the K-II rotor. Anal Biochem 32(3):495–511

    Article  CAS  Google Scholar 

  3. Prantner AM, Chen J, Murray CB et al (2012) Coating evaluation and purification of monodisperse, water-soluble, magnetic nanoparticles using sucrose density gradient ultracentrifugation. Chem Mater 24(21):4008–4010

    Article  CAS  Google Scholar 

  4. Sun X, Luo D, Liu J et al (2010) Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation. ACS Nano 4(6):3381–3389

    Article  CAS  Google Scholar 

  5. Speranskaya ES, Beloglazova NV, Abé S et al (2014) Hydrophilic, bright CuInS2 quantum dots as Cd-free fluorescent labels in quantitative immunoassay. Langmuir 30(25):7567–7575

    Article  CAS  Google Scholar 

  6. Pine GG, Yuan XL (2008) Modern separation science and technology series: centrifugal separation (M). Chemical Industry Press, Beijing

    Google Scholar 

  7. Kirkland J, Yau W, Doerner W, Grant J et al (1980) Sedimentation field flow fractionation of macromolecules and colloids. Anal Chem 52(12):1944–1954

    Article  CAS  Google Scholar 

  8. Sun X, Zaric S, Daranciang D et al (2008) Optical properties of ultrashort semiconducting single-walled carbon nanotube capsules down to sub-10 nm. J Am Chem Soc 130(20):6551–6555

    Article  CAS  Google Scholar 

  9. Green AA, Hersam MC (2007) Ultracentrifugation of single-walled nanotubes. Mater Today 10(12):59–60

    Article  CAS  Google Scholar 

  10. Green AA, Duch MC, Hersam MC (2009) Isolation of single-walled carbon nanotube enantiomers by density differentiation. Nano Res 2(1):69–77

    Article  CAS  Google Scholar 

  11. Green AA, Hersam MC (2009) Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett 9(12):4031–4036

    Article  CAS  Google Scholar 

  12. Ghosh S, Bachilo SM, Weisman RB (2010) Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat Nanotechnol 5(6):443–450

    Article  CAS  Google Scholar 

  13. Liu J, Hersam MC (2010) Recent developments in carbon nanotube sorting and selective growth. MRS Bull 35(4):315–321

    Article  CAS  Google Scholar 

  14. Deng L, Wang X, Kuang Y et al (2015) Separation of non-sentimental carbon dots using “hydrophilicity gradient ultracentrifugation” for photoluminescence investigation. Nano Res 8(9):2810–2821

    Article  CAS  Google Scholar 

  15. Zhang C, Luo L, Luo J et al (2012) A process-analysis microsystem based on density gradient centrifugation and its application in the study of the galvanic replacement mechanism of Ag nanoplates with HAuCl4. Chem Commun 48(58):7241–7243

    Article  CAS  Google Scholar 

  16. Bonaccorso F, Zerbetto M, Ferrari AC et al (2013) Sorting nanoparticles by centrifugal fields in clean media. J Phys Chem C 117(25):13217–13229

    Article  CAS  Google Scholar 

  17. Chang Z, Wu C, Song S et al (2013) Synthesis mechanism study of layered double hydroxides based on nanoseparation. Inorg Chem 52(15):8694–8698

    Article  CAS  Google Scholar 

  18. Chen G, Wang Y, Tan LH et al (2009) High-purity separation of gold nanoparticle dimers and trimers. J Am Chem Soc 131(12):4218–4219

    Article  CAS  Google Scholar 

  19. Wang Y, Chen G, Yang M et al (2010) A systems approach towards the stoichiometry-controlled hetero-assembly of nanoparticles. Nat Commun 1:87

    CAS  Google Scholar 

  20. Yang M, Chen T, Lau WS et al (2009) Development of polymer-encapsulated metal nanoparticles as surface-enhanced Raman scattering probes. Small 5(2):198–202

    Article  CAS  Google Scholar 

  21. Bai L, Ma X, Liu J et al (2010) Rapid separation and purification of nanoparticles in organic density gradients. J Am Chem Soc 132(7):2333–2337

    Article  CAS  Google Scholar 

  22. Ma X, Kuang Y, Bai L et al (2011) Experimental and mathematical modeling studies of the separation of zinc blende and wurtzite phases of CdS nanorods by density gradient ultracentrifugation. ACS Nano 5(4):3242–3249

    Article  CAS  Google Scholar 

  23. Song S, Kuang Y, Liu J et al (2013) Separation and phase transition investigation of Yb 3 +/Er 3 + co-doped NaYF4 nanoparticles. Dalton T 42(37):13315–13318

    Article  CAS  Google Scholar 

  24. Stürzl N, Hennrich F, Lebedkin S et al (2009) Near monochiral single-walled carbon nanotube dispersions in organic solvents. J Phys Chem C 113(33):14628–14632

    Article  CAS  Google Scholar 

  25. Mastronardi ML, Hennrich F, Henderson EJ et al (2011) Preparation of monodisperse silicon nanocrystals using density gradient ultracentrifugation. J Am Chem Soc 133(31):11928–11931

    Article  CAS  Google Scholar 

  26. Guglielmi L, Battu S, Le Bert M, Faucher JL, Cardot PJP, Denizot Y (2004) Mouse embryonic stem cell sorting for the generation of transgenic mice by sedimentation field-flow fractionation. Anal Chem 76(6):1580–1585

    Article  CAS  Google Scholar 

  27. Nolan CM, Reyes CD, Debord JD, García AJ, Lyon LA (2005) Phase transition behavior, protein adsorption, and cell adhesion resistance of poly(ethylene glycol) cross-linked microgel particles. Biomacromol 6(4):2032

    Article  CAS  Google Scholar 

  28. Akbulut O, Mace CR, Martinez RV, Kumar AA, Nie Z, Patton MR, Whitesides GM (2012) Separation of nanoparticles in aqueous multiphase systems through centrifugation. Nano Lett 12(8):4060–4064

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Q., Sun, X. (2018). Density Gradient Ultracentrifugation Technique. In: Nanoseparation Using Density Gradient Ultracentrifugation. SpringerBriefs in Molecular Science. Springer, Singapore. https://doi.org/10.1007/978-981-10-5190-6_3

Download citation

Publish with us

Policies and ethics