Density Gradient Ultracentrifugation Technique

  • Qian Zhang
  • Xiong Sun
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)


As a general, non-destructive, and scalable separation method, DGUC has recently been demonstrated as an efficient way of sorting colloidal nanoparticles according to their differences in chemical, structural, size, or morphology. After the introduction of basic concepts of density gradient ultracentrifugation, for the practical applications, there are various parameters to be considered. Nanoparticles will have different movement ways in different separation systems. In principle, particle movement characteristic in liquid media not only depends on the centrifugal force but also relies on the density, size, and shape of particle and the density and viscosity of the liquid medium and so on, while the gravity and intermolecular force can be ignored. In this chapter, typical parameters such as choice of gradient media, density gradient, rotor type, centrifugation speed, and time will be discussed.


Gradient media Step gradient Continuous gradient Rotor type Centrifugal force \( \omega^{2} t \) calculation method K′ coefficient estimation method 


  1. 1.
    Sartory WK (1970) Fractional cleanout in a continuous-flow centrifuge. Sep Sci Technol 5(2):137–143Google Scholar
  2. 2.
    Perardi TE, Leffler RAA, Anderson NG (1969) K-series centrifuges II. Performance of the K-II rotor. Anal Biochem 32(3):495–511CrossRefGoogle Scholar
  3. 3.
    Prantner AM, Chen J, Murray CB et al (2012) Coating evaluation and purification of monodisperse, water-soluble, magnetic nanoparticles using sucrose density gradient ultracentrifugation. Chem Mater 24(21):4008–4010CrossRefGoogle Scholar
  4. 4.
    Sun X, Luo D, Liu J et al (2010) Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation. ACS Nano 4(6):3381–3389CrossRefGoogle Scholar
  5. 5.
    Speranskaya ES, Beloglazova NV, Abé S et al (2014) Hydrophilic, bright CuInS2 quantum dots as Cd-free fluorescent labels in quantitative immunoassay. Langmuir 30(25):7567–7575CrossRefGoogle Scholar
  6. 6.
    Pine GG, Yuan XL (2008) Modern separation science and technology series: centrifugal separation (M). Chemical Industry Press, BeijingGoogle Scholar
  7. 7.
    Kirkland J, Yau W, Doerner W, Grant J et al (1980) Sedimentation field flow fractionation of macromolecules and colloids. Anal Chem 52(12):1944–1954CrossRefGoogle Scholar
  8. 8.
    Sun X, Zaric S, Daranciang D et al (2008) Optical properties of ultrashort semiconducting single-walled carbon nanotube capsules down to sub-10 nm. J Am Chem Soc 130(20):6551–6555CrossRefGoogle Scholar
  9. 9.
    Green AA, Hersam MC (2007) Ultracentrifugation of single-walled nanotubes. Mater Today 10(12):59–60CrossRefGoogle Scholar
  10. 10.
    Green AA, Duch MC, Hersam MC (2009) Isolation of single-walled carbon nanotube enantiomers by density differentiation. Nano Res 2(1):69–77CrossRefGoogle Scholar
  11. 11.
    Green AA, Hersam MC (2009) Solution phase production of graphene with controlled thickness via density differentiation. Nano Lett 9(12):4031–4036CrossRefGoogle Scholar
  12. 12.
    Ghosh S, Bachilo SM, Weisman RB (2010) Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat Nanotechnol 5(6):443–450CrossRefGoogle Scholar
  13. 13.
    Liu J, Hersam MC (2010) Recent developments in carbon nanotube sorting and selective growth. MRS Bull 35(4):315–321CrossRefGoogle Scholar
  14. 14.
    Deng L, Wang X, Kuang Y et al (2015) Separation of non-sentimental carbon dots using “hydrophilicity gradient ultracentrifugation” for photoluminescence investigation. Nano Res 8(9):2810–2821CrossRefGoogle Scholar
  15. 15.
    Zhang C, Luo L, Luo J et al (2012) A process-analysis microsystem based on density gradient centrifugation and its application in the study of the galvanic replacement mechanism of Ag nanoplates with HAuCl4. Chem Commun 48(58):7241–7243CrossRefGoogle Scholar
  16. 16.
    Bonaccorso F, Zerbetto M, Ferrari AC et al (2013) Sorting nanoparticles by centrifugal fields in clean media. J Phys Chem C 117(25):13217–13229CrossRefGoogle Scholar
  17. 17.
    Chang Z, Wu C, Song S et al (2013) Synthesis mechanism study of layered double hydroxides based on nanoseparation. Inorg Chem 52(15):8694–8698CrossRefGoogle Scholar
  18. 18.
    Chen G, Wang Y, Tan LH et al (2009) High-purity separation of gold nanoparticle dimers and trimers. J Am Chem Soc 131(12):4218–4219CrossRefGoogle Scholar
  19. 19.
    Wang Y, Chen G, Yang M et al (2010) A systems approach towards the stoichiometry-controlled hetero-assembly of nanoparticles. Nat Commun 1:87Google Scholar
  20. 20.
    Yang M, Chen T, Lau WS et al (2009) Development of polymer-encapsulated metal nanoparticles as surface-enhanced Raman scattering probes. Small 5(2):198–202CrossRefGoogle Scholar
  21. 21.
    Bai L, Ma X, Liu J et al (2010) Rapid separation and purification of nanoparticles in organic density gradients. J Am Chem Soc 132(7):2333–2337CrossRefGoogle Scholar
  22. 22.
    Ma X, Kuang Y, Bai L et al (2011) Experimental and mathematical modeling studies of the separation of zinc blende and wurtzite phases of CdS nanorods by density gradient ultracentrifugation. ACS Nano 5(4):3242–3249CrossRefGoogle Scholar
  23. 23.
    Song S, Kuang Y, Liu J et al (2013) Separation and phase transition investigation of Yb 3 +/Er 3 + co-doped NaYF4 nanoparticles. Dalton T 42(37):13315–13318CrossRefGoogle Scholar
  24. 24.
    Stürzl N, Hennrich F, Lebedkin S et al (2009) Near monochiral single-walled carbon nanotube dispersions in organic solvents. J Phys Chem C 113(33):14628–14632CrossRefGoogle Scholar
  25. 25.
    Mastronardi ML, Hennrich F, Henderson EJ et al (2011) Preparation of monodisperse silicon nanocrystals using density gradient ultracentrifugation. J Am Chem Soc 133(31):11928–11931CrossRefGoogle Scholar
  26. 26.
    Guglielmi L, Battu S, Le Bert M, Faucher JL, Cardot PJP, Denizot Y (2004) Mouse embryonic stem cell sorting for the generation of transgenic mice by sedimentation field-flow fractionation. Anal Chem 76(6):1580–1585CrossRefGoogle Scholar
  27. 27.
    Nolan CM, Reyes CD, Debord JD, García AJ, Lyon LA (2005) Phase transition behavior, protein adsorption, and cell adhesion resistance of poly(ethylene glycol) cross-linked microgel particles. Biomacromol 6(4):2032CrossRefGoogle Scholar
  28. 28.
    Akbulut O, Mace CR, Martinez RV, Kumar AA, Nie Z, Patton MR, Whitesides GM (2012) Separation of nanoparticles in aqueous multiphase systems through centrifugation. Nano Lett 12(8):4060–4064CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Qian Zhang
    • 1
  • Xiong Sun
    • 1
  1. 1.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations