Advertisement

Introduction to Nanoseparation

  • Yun Kuang
  • Ming Jiang
  • Kai Sun
Chapter
Part of the SpringerBriefs in Molecular Science book series (BRIEFSMOLECULAR)

Abstract

Nanomaterials have been attracted tremendous attentions for decades, due to their unique properties on nanoscale. As well known, the properties, such as chemical, thermal, mechanical, optical, electrical, and magnetic properties, are highly dependent on the size of nanomaterials, as so-called size-dependent quantum effect. Thus, to obtain monodisperse nanostructures is of great significance. With the help of various ligands, solution-phase synthesis could produce colloidal nanostructures with relatively homogeneous morphology and narrow size distribution for some nanosystems. However, owing to the synthetic difficulties, fine control of uniform nanostructures still remains a big challenge. Besides, nanoseparation, as a “post-synthesis” method, is a powerful tool to sort and achieve monodispersity and to avoid possible aggregation of the colloids. In this chapter, the basic principles of nanoseparation and a brief introduction of common techniques used for the separation of nanostructures, including membrane filtration, chromatograph, electrophoresis, magnetic field and centrifugation, will be discussed.

Keywords

Size-dependent effect Monodispersity Post-synthesis Principles of nanoseparation Common techniques for nanoseparation 

References

  1. 1.
    Ersahin ME, Ozgun H, Dereli RK et al (2012) A review on dynamic membrane filtration: materials, applications and future perspectives. Bioresource Technol 122(5):196–206CrossRefGoogle Scholar
  2. 2.
    Sweeney SF, Woehrle GH, Hutchison JE (2006) J Am Chem Soc 128:3190–3197Google Scholar
  3. 3.
    Prabha S, Zhou WZ, Panyam J et al (2002) Size-dependency of nanoparticle-mediated gene transfection: studies with fractionated nanoparticles. Int J Pharm 244:105–115CrossRefGoogle Scholar
  4. 4.
    Akthakul A, Hochbaum AI, Stellacci F et al (2005) Mayes size fractionation of metal nanoparticles by membrane filtration. Adv Mater 17:532–535CrossRefGoogle Scholar
  5. 5.
    Weiss J (2008) Ion chromatography. Wiley, HobokenGoogle Scholar
  6. 6.
    Krueger KM, Al-Somali AM, Falkner JC et al (2005) Colvin characterization of nanocrystalline CdSe by size exclusion chromatography. Anal Chem 77:3511–3515CrossRefGoogle Scholar
  7. 7.
    Novak JP, Nickerson C, Franzen S et al (2001) Purification of molecularly bridged metal nanoparticle arrays by centrifugation and size exclusion chromatography. Anal Chem 73:5758–5761CrossRefGoogle Scholar
  8. 8.
    Fischer CH, Weller H, Katsikas L et al (2002) Photochemistry of colloidal semiconductors. 30. HPLC investigation of small CdS particles. Langmuir 5(2):429–432CrossRefGoogle Scholar
  9. 9.
    Wei GT, Liu FK, Wang CRC (1999) Shape separation of nanometer gold particles by size-exclusion chromatography. Anal Chem 71(11):2085–2091CrossRefGoogle Scholar
  10. 10.
    Jimenez VL, Leopold MC, Mazzitelli C et al (2003) HPLC of monolayer-protected gold nanoclusters. Anal Chem 75(2):199–206CrossRefGoogle Scholar
  11. 11.
    Moore KE, Pfohl M, Hennrich F et al (2014) Separation of double-walled carbon nanotubes by size exclusion column chromatography. ACS Nano 8(7):6756–6764CrossRefGoogle Scholar
  12. 12.
    Anand Jagota SRL, Constantine Khripin, Ming Z (2005) Theory of structure-based carbon nanotube separations by ion-exchange chromatography of DNA/CNT hybrids. J Phys Chem B 109(7):2559–2566CrossRefGoogle Scholar
  13. 13.
    Xu X, Caswell KK, Tucker E et al (2007) Size and shape separation of gold nanoparticles with preparative gel electrophoresis. J Chromatogr A 1167(1):35–41CrossRefGoogle Scholar
  14. 14.
    Arnaud I, Abid JP, Roussel C et al (2005) Size-selective separation of gold nanoparticles using isoelectric focusing electrophoresis. Chem Commun 6(6):787CrossRefGoogle Scholar
  15. 15.
    Hwang WM, Lee CY, Boo DW et al (2003) Separation of nanoparticles in different sizes and compositions by capillary electrophoresis. B Kor Chem Soc 24(5):684–686CrossRefGoogle Scholar
  16. 16.
    Schaaff TG, Knight G, Shafigullin MN et al (1998) Isolation and selected properties of a 10.4 kDa gold:glutathione cluster compound. J Phys Chem B 102(52)CrossRefGoogle Scholar
  17. 17.
    Eychmüller A, Katsikas L, Weller H (1990) Photochemistry of semiconductor colloids. 35. Size separation of colloidal cadmium sulfide by gel electrophoresis. Langmuir 6(10):1605–1608CrossRefGoogle Scholar
  18. 18.
    Hanauer M, Pierrat S, Zins I et al (2007) Separation of nanoparticles by gel electrophoresis according to size and shape. Nano Lett 7(7):2881–2885CrossRefGoogle Scholar
  19. 19.
    Peterson RR, Cliffel DE (2005) Continuous free-flow electrophoresis of water-soluble monolayer-protected clusters. Anal Chem 77(14):4348–4353CrossRefGoogle Scholar
  20. 20.
    Gole AM, Sathivel C, Lachke A et al (1999) Size separation of colloidal nanoparticles using a miniscale isoelectric focusing technique. J Chromatogr A 848(1–2):485–490CrossRefGoogle Scholar
  21. 21.
    Liu FK, Tsai MH, Hsu YC et al (2006) Analytical separation of Au/Ag core/shell nanoparticles by capillary electrophoresis. J Chromatogr A 1133(1):340–346CrossRefGoogle Scholar
  22. 22.
    Lao AIK, Trau D, Hsing IM (2002) Miniaturized flow fractionation device assisted by a pulsed electric field for nanoparticle separation. Anal Chem 74(20):5364CrossRefGoogle Scholar
  23. 23.
    Gigault J, Gale BK, Le Hecho I et al (2011) Nanoparticle characterization by cyclical electrical field-flow fractionation. Anal Chem 83(17):6565CrossRefGoogle Scholar
  24. 24.
    Latham AH, Freitas RS, Schiffer P et al (2005) Capillary magnetic field flow fractionation and analysis of magnetic nanoparticles. Anal Chem 77(15):5055–5062CrossRefGoogle Scholar
  25. 25.
    Beveridge J S. (2012) Differential magnetic catch and release: separation, purification, and characterization of magnetic nanoparticles and particle assemblies. Dissertations and theses-GradworksGoogle Scholar
  26. 26.
    Beveridge JS, Buck MR, Bondi JF et al (2011) Purification and magnetic interrogation of hybrid Au–Fe3O4 and FePt–Fe3O4 nanoparticles. Angew Chem Int Edit 50(42):9875–9879CrossRefGoogle Scholar
  27. 27.
    Yavuz CT, Mayo JT, William WY et al (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314(5801):964CrossRefGoogle Scholar
  28. 28.
    O’connell MJ, Bachilo SM, Huffman CB et al (2002) Band gap fluorescence from individual single-walled carbon nanotubes. Science 297(5581):593CrossRefGoogle Scholar
  29. 29.
    Guo Z, Fan X, Xu L et al (2011) Shape separation of colloidal gold nanoparticles through salt-triggered selective precipitation. Chem Commun 47(14):4180CrossRefGoogle Scholar
  30. 30.
    Sharma V, Park K, Srinivasarao M (2009) Shape separation of gold nanorods using centrifugation. PNAS 106(13):4981–4985CrossRefGoogle Scholar
  31. 31.
    Jamison JA, Krueger KM, Yavuz CT et al (2008) Size-dependent sedimentation properties of nanocrystals. ACS Nano 2(2):311–319CrossRefGoogle Scholar
  32. 32.
    Svedberg T, Nichols JB (2002) Determination of size and distribution of size of particle by centrifugal methods. J Am Chem Soc 12:2910–2917Google Scholar
  33. 33.
    Li P, Huang J, Luo L et al (2016) Universal parameter optimization of density gradient ultracentrifugation using CdSe nanoparticles as tracing agents. Anal Chem 88(17):8495CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Yun Kuang
    • 1
  • Ming Jiang
    • 1
  • Kai Sun
    • 1
  1. 1.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations