Skip to main content

Pharmacogenetics and Personalized Medicine

  • Chapter
  • First Online:
Book cover Drug Design: Principles and Applications

Abstract

Recent advances in the comprehension of pathogenic mechanisms of human diseases have brought the researchers to the discovery of putative pharmacological targets and the subsequent development of the so-called targeted drugs. In order to maximize their efficacy, as well as that of the other drugs, it is imperative to identify those patients that are more prone to experience a therapeutic benefit. In the pharmacogenetic area, several strategies may be pursued to assay biomarkers. The quantitation of gene expression, the identification of changes in gene and chromosomal sequences, and the evaluation of epigenetic factors may contribute to anticipate drug efficacy and tolerability. At those levels, the number of candidate genes that may be investigated is highly variable, up to the evaluation of the whole human genome. Despite the increasing complexity of pharmacogenetic analyses and their interpretation, some relationships between genetic biomarkers and treatment outcomes may be characterized by suboptimal values of sensitivity and specificity. For that reason, the validation of the biomarkers and their transfer into the clinics are the major challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3′-UTR:

3′-Untranslated region

5-FU:

5-Fluoruracil

ABCB1:

ATP-binding cassette transporter family member B1

AIFA:

Italian Medicine Agency

AML:

Acute myeloid leukemia

BCR-Abl:

Breakpoint cluster region-Abelson

CML:

Chronic myeloid leukemia

CRC:

Colorectal cancer

CYP2D6:

Cytochrome P450 isoform 2D6

CYP3A4:

Cytochrome P450 isoform 3A4

CYP450:

Cytochrome P450

ddPCR:

Digital droplet PCR

DNMT:

DNA methyl transferase

dpydDPD:

Dihydropyrimidine dehydrogenase

EGFR:

Epithelial growth factor receptor

ELN:

European Leukemia Network

FDA:

Food and Drug Administration

HAT:

Histone acetyltransferase

HDAC:

Histone deacetyltransferase

HMGCoA:

Hydroxymethyl-glutaryl coenzyme A

hOCT1:

Human organic cation transporter family member 1

lncRNA:

Long-noncoding RNA

miRNA:

microRNA

NAT:

N-acetyl transferase

ncRNA:

Noncoding RNA

NGS:

Next-generation sequencing

NSAID:

Nonsteroidal anti-inflammatory drug

NSCLC:

Non-small-cell lung cancer

OS:

Overall survival

PCR:

Polymerase chain reaction

PFS:

Progression-free survival

RR:

Response rate

SLCO1B1:

Solute carrier organic anion transporter family member 1B1

SLCO1B3:

Solute carrier organic anion transporter family member 1B3

SNP:

Single-nucleotide polymorphism

TYMS:

Thymidylate synthase

WGAS:

Genome-wide association study

References

  1. Modell SM, Lehmann MH (2006) The long QT syndrome family of cardiac ion channelopathies: a HuGE review. Genet Med 8(3):143–155

    Article  CAS  PubMed  Google Scholar 

  2. Koussounadis A, Langdon SP, Um IH, Harrison DJ, Smith VA (2015) Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Sci Rep 5:10775

    Article  PubMed  PubMed Central  Google Scholar 

  3. Maier T, Güell M, Serrano L (2009) Correlation of mRNA and protein in complex biological samples. FEBS Lett 583(24):3966–3973

    Article  CAS  PubMed  Google Scholar 

  4. Crea F, Di Paolo A, Liu HH, Polillo M, Clermont P-L, Guerrini F, Ciabatti E, Ricci F, Baratè C, Fontanelli G, Barsotti S, Morganti R, Danesi R, Wang Y, Petrini M, Galimberti S, Helgason CD (2015) Polycomb genes are associated with response to imatinib in chronic myeloid leukemia. Epigenomics 7(5):757–765

    Article  CAS  PubMed  Google Scholar 

  5. Lu W, Li X, Uetrecht JP (2008) Changes in gene expression induced by carbamazepine and phenytoin: testing the danger hypothesis. J Immunotoxicol 5(2):107–113

    Article  CAS  PubMed  Google Scholar 

  6. Sankpal UT, Goodison S, Jones-Pauley M, Hurtado M, Zhang F, Basha R Tolfenamic acid-induced alterations in genes and pathways in pancreatic cancer cells. Oncotarget. 2017 Jan 14; doi 10.18632/oncotarget.14651

    Google Scholar 

  7. Wang ZC, Lin M, Wei L-J, Li C, Miron A, Lodeiro G, Harris L, Ramaswamy S, Tanenbaum DM, Meyerson M, Iglehart JD, Richardson A (2004) Loss of heterozygosity and its correlation with expression profiles in subclasses of invasive breast cancers. Cancer Res 64(1):64–71

    Article  CAS  PubMed  Google Scholar 

  8. Li L, Fridley BL, Kalari K, Jenkins G, Batzler A, Weinshilboum RM, Wang L (2009) Gemcitabine and arabinosylcytosin pharmacogenomics: genome-wide association and drug response biomarkers. PLoS One 4(11):e7765

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li L, Zhang J-W, Jenkins G, Xie F, Carlson EE, Fridley BL, Bamlet WR, Petersen GM, McWilliams RR, Wang L (2016) Genetic variations associated with gemcitabine treatment outcome in pancreatic cancer. Pharmacogenet Genomics 26(12):527–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moore JH, Asselbergs FW, Williams SM (2010) Bioinformatics challenges for genome-wide association studies. Bioinformatics 26(4):445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu Y, Maxwell S, Feng T, Zhu X, Elston RC, Koyutürk M, Chance MR (2012) Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data. BMC Syst Biol 6(Suppl 3):S15

    Article  PubMed  PubMed Central  Google Scholar 

  12. Weigelt B, Reis-Filho JS (2014) Epistatic interactions and drug response. J Pathol 232(2):255–263

    Article  PubMed  Google Scholar 

  13. Huang J, Qi R, Quackenbush J, Dauway E, Lazaridis E, Yeatman T (2001) Effects of ischemia on gene expression. J Surg Res 99(2):222–227

    Article  CAS  PubMed  Google Scholar 

  14. Musella V, Verderio P, Reid JF, Pizzamiglio S, Gariboldi M, Callari M, Milione M, De Cecco L, Veneroni S, Pierotti MA, Daidone MG (2013) Effects of warm ischemic time on gene expression profiling in colorectal cancer tissues and normal mucosa. PLoS One 8(1):e53406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mroz EA, Rocco JW (2017) The challenges of tumor genetic diversity. Cancer 123(6):917–927

    Article  PubMed  Google Scholar 

  16. Di Paolo A, Polillo M, Lastella M, Bocci G, Del Re M, Danesi R (2015) Methods: for studying pharmacogenetic profiles of combination chemotherapeutic drugs. Expert Opin Drug Metab Toxicol 11(8):1253–1267

    Article  PubMed  Google Scholar 

  17. Hothem Z, Bayci A, Thibodeau BJ, Ketelsen BE, Fortier LE, Uzieblo AF, Cosner D, Totoraitis K, Keidan RD, Wilson GD (2017) Using global gene expression to discriminate thin melanomas with poor outcomes. Mol Cell Oncol 4(1):e1253527

    Article  PubMed  Google Scholar 

  18. Lv W-P, Han R-F, Shu Z-R (2014) Associations between the C3435T polymorphism of the ABCB1 gene and drug resistance in epilepsy: a meta-analysis. Int J Clin Exp Med 7(11):3924–3932

    PubMed  PubMed Central  Google Scholar 

  19. Di Paolo A, Polillo M, Capecchi M, Cervetti G, Baratè C, Angelini S, Guerrini F, Fontanelli G, Arici R, Ciabatti E, Grassi S, Bocci G, Hrelia P, Danesi R, Petrini M, Galimberti S. The c.480C>G polymorphism of hOCT1 influences imatinib clearance in patients affected by chronic myeloid leukemia. Pharmacogenomics J 2014;14(4):328–335.

    Google Scholar 

  20. Gay C, Toulet D, Le Corre P (2016) Pharmacokinetic drug-drug interactions of tyrosine kinase inhibitors: a focus on cytochrome P450, transporters, and acid suppression therapy. Hematol Oncol. doi:10.1002/hon.2335

  21. Galeotti L, Ceccherini F, Domingo D, Laurino M, Polillo M, Di Paolo A, Baratè C, Fava C, D'Avolio A, Cervetti G, Guerrini F, Fontanelli G, Ciabatti E, Grassi S, Arrigoni E, Danesi R, Petrini M, Cornolti F, Saglio G, Galimberti S (2017) Association of the hOCT1/ABCB1 genotype with efficacy and tolerability of imatinib in patients affected by chronic myeloid leukemia. Cancer Chemother Pharmacol 13

    Google Scholar 

  22. Webster LR, Belfer I (2016) Pharmacogenetics and personalized medicine in pain management. Clin Lab Med 36(3):493–506

    Article  PubMed  Google Scholar 

  23. Miyata Y, Akamatsu N, Sugawara Y, Kaneko J, Yamamoto T, Suzuki H, Arita J, Sakamoto Y, Hasegawa K, Tamura S, Kokudo N (2016) Pharmacokinetics of a once-daily dose of Tacrolimus early after liver transplantation: with special reference to CYP3A5 and ABCB1 single nucleotide polymorphisms. Ann Transplant 21:491–499

    Article  PubMed  Google Scholar 

  24. Arrigoni E, Del Re M, Fidilio L, Fogli S, Danesi R, Di Paolo A (2017) Pharmacogenetic foundations of therapeutic efficacy and adverse events of statins. Int J Mol Sci 18(1)

    Google Scholar 

  25. Olivier M, Hollstein M, Hainaut P (2010) TP53 mutations in human cancers: origins, consequences, and clinical use. Cold Spring Harb Perspect Biol 2(1):a001008

    Article  PubMed  PubMed Central  Google Scholar 

  26. Arrington AK, Heinrich EL, Lee W, Duldulao M, Patel S, Sanchez J, Garcia-Aguilar J, Kim J (2012) Prognostic and predictive roles of KRAS mutation in colorectal cancer. Int J Mol Sci 13(10):12153–12168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang J, Li S, Wang B, Wu Y, Chen Z, Lv M, Lin Y, Yanh J (2016) Potential biomarkers for anti-EGFR therapy in metastatic colorectal cancer. Tumour Biol 37(9):11645–11655

    Article  CAS  PubMed  Google Scholar 

  28. Hientz K, Mohr A, Bhakta-Guha D, Efferth T (2017) The role of p53 in cancer drug resistance and targeted chemotherapy. Oncotarget 8(5):8921–8946

    PubMed  Google Scholar 

  29. Bahrami A, Hassanian SM, ShahidSales S, Farjami Z, Hasanzadeh M, Anvari K, Aledavood A, Maftouh M, Ferns GA, Khazaei M, Avan A (2017) Targeting the RAS signaling pathway as a potential therapeutic target in the treatment of colorectal cancer. J Cell Physiol. doi:10.1002/jcp.25890

  30. Kassouf E, Tabchi S, Tehfe M (2016) Anti-EGFR therapy for metastatic colorectal cancer in the era of extended RAS Gene mutational analysis. BioDrugs 30(2):95–104

    Article  CAS  PubMed  Google Scholar 

  31. Lee DH. Treatments for EGFR-mutant non-small cell lung cancer (NSCLC): the road to a success, paved with failures. Pharmacol Ther2017.02.0012017; Doi 01016/Jpharmthera

    Google Scholar 

  32. Baccarani M, Castagnetti F, Gugliotta G, Rosti GA (2015) Review of the European LeukemiaNet recommendations for the management of CML. Ann Hematol 94(Suppl 2):S141–S147

    Article  PubMed  Google Scholar 

  33. Molica M, Massaro F, Breccia M (2017) Second line small molecule therapy options for treating chronic myeloid leukemia. Expert Opin Pharmacother 18(1):57–65

    Article  CAS  PubMed  Google Scholar 

  34. Deeley K, Noel J, Vieira AR (2016) Comparative study of five commercially available saliva collection kits for DNA extraction. Clin Lab 62(9):1809–1813

    PubMed  Google Scholar 

  35. Sauna ZE, Kimchi-Sarfaty C (2011) Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet 12(10):683–691

    Article  CAS  PubMed  Google Scholar 

  36. Kimchi-Sarfaty C, JM O, Kim I-W, Sauna ZE, Calcagno AM, Ambudkar SV, Gottesman MMA (2007) “Silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315(5811):525–528

    Article  CAS  PubMed  Google Scholar 

  37. Megías-Vericat JE, Montesinos P, Herrero MJ, Moscardó F, Bosó V, Rojas L, Martínez-Cuadrón D, Hervás D, Boluda B, García-Robles A, Rodríguez-Veiga R, Martín-Cerezuela M, Cervera J, Sendra L, Sanz J, Miguel A, Lorenzo I, Poveda JL, Sanz MÁ, Aliño SF (2017) Impact of ABC single nucleotide polymorphisms upon the efficacy and toxicity of induction chemotherapy in acute myeloid leukemia. Leuk Lymphoma 58(5):1197–1206

    Article  PubMed  Google Scholar 

  38. Soranzo N, Cavalleri GL, Weale ME, Wood NW, Depondt C, Marguerie R, Sisodiya SM, Goldstein DB (2004) Identifying candidate causal variants responsible for altered activity of the ABCB1 multidrug resistance gene. Genome Res 14(7):1333–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Syn NL-X, Yong W-P, Goh B-C, Lee S-C (2016) Evolving landscape of tumor molecular profiling for personalized cancer therapy: a comprehensive review. Expert Opin Drug Metab Toxicol 12(8):911–922

    Article  CAS  PubMed  Google Scholar 

  40. Wang Z, Zang C, Cui K, Schones DE, Barski A, Peng W, Zhao K (2009) Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138(5):1019–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ambrosi C, Manzo M, Baubec T. Dynamics and context-dependent roles of DNA methylation. J Mol Biol2017.02.0082017; doi 01016/Jjmb.

    Google Scholar 

  42. Haery L, Thompson RC, Gilmore TD (2015) Histone acetyltransferases and histone deacetylases in B- and T-cell development, physiology and malignancy. Genes Cancer 6(5–6):184–213

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Cohen I, Poręba E, Kamieniarz K, Schneider R (2011) Histone modifiers in cancer: friends or foes? Genes Cancer 2(6):631–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N, Lu Z, Ye Z, Zhu Q, Wysocka J, Ye Y, Khochbin S, Ren B, Zhao Y (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146(6):1016–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee BM, Mahadevan LC (2009) Stability of histone modifications across mammalian genomes: implications for “epigenetic” marking. J Cell Biochem 108(1):22–34

    Article  CAS  PubMed  Google Scholar 

  46. Olzscha H, Sheikh S, La Thangue NB (2015) Deacetylation of chromatin and gene expression regulation: a new target for epigenetic therapy. Crit Rev Oncog 20:1–2):1–17

    Article  PubMed  Google Scholar 

  47. Kim H-J, Bae S-C (2011) Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am J Transl Res 3(2):166–179

    CAS  PubMed  Google Scholar 

  48. Subramaniam D, Thombre R, Dhar A, Anant S (2014) DNA methyltransferases: a novel target for prevention and therapy. Front Oncol 4:80

    Article  PubMed  PubMed Central  Google Scholar 

  49. Castillo-Aguilera O, Depreux P, Halby L, Arimondo PB, Goossens L (2017) DNA methylation targeting: the DNMT/HMT crosstalk challenge. Biomol Ther 7(1). doi:10.3390/biom7010003

  50. Kurdyukov S, Bullock M (2016) DNA methylation analysis: choosing the right method. Biology (Basel) 5(1)

    Google Scholar 

  51. Baharudin R, Ab Mutalib N-S, Othman SN, Sagap I, Rose IM, Mohd Mokhtar N, Jamal R (2017) Identification of predictive DNA methylation biomarkers for chemotherapy response in colorectal cancer. Front Pharmacol 8:47

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rose NR, Klose RJ (2014) Understanding the relationship between DNA methylation and histone lysine methylation. Biochim Biophys Acta 1839(12):1362–1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ayers D, Vandesompele J (2017) Influence of microRNAs and long non-coding RNAs in cancer chemoresistance. Genes (Basel) 8(3):3

    Article  Google Scholar 

  54. Deng H, Zhang J, Shi J, Guo Z, He C, Ding L, Tang JH, Hou Y (2016) Role of long non-coding RNA in tumor drug resistance. Tumour Biol 37(9):11623–11631

    Article  CAS  PubMed  Google Scholar 

  55. Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466(7308):835–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, Huarte M, Zuk O, Carey BW, Cassady JP, Cabili MN, Jaenisch R, Mikkelsen TS, Jacks T, Hacohen N, Bernstein BE, Kellis M, Regev A, Rinn JL, Lander ES (2009) Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458(7235):223–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hu W, Yuan B, Flygare J, Lodish HF (2011) Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev 25(24):2573–2578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Li J, Tian H, Yang J, Gong Z (2016) Long noncoding RNAs regulate cell growth, proliferation, and apoptosis. DNA Cell Biol 35(9):459–470

    Article  CAS  PubMed  Google Scholar 

  59. Askarian-Amiri ME, Leung E, Finlay G, Baguley BC (2016) The regulatory role of long noncoding RNAs in cancer drug resistance. Methods Mol Biol 1395:207–227

    Article  PubMed  Google Scholar 

  60. Arnes L, Sussel L (2015) Epigenetic modifications and long noncoding RNAs influence pancreas development and function. Trends Genet 31(6):290–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Viereck J, Thum T (2017) Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury. Circ Res 120(2):381–399

    Article  CAS  PubMed  Google Scholar 

  62. Duong Van Huyen J-P, Tible M, Gay A, Guillemain R, Aubert O, Varnous S, Iserin F, Rouvier P, François A, Vernerey D, Loyer X, Leprince P, Empana JP, Bruneval P, Loupy A, Jouven X (2014) MicroRNAs as non-invasive biomarkers of heart transplant rejection. Eur Heart J 35(45):3194–3202

    Article  PubMed  Google Scholar 

  63. Busch A, Eken SM, Maegdefessel L (2016) Prospective and therapeutic screening value of non-coding RNA as biomarkers in cardiovascular disease. Ann Transl Med 4(12):236

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kim KM, Abdelmohsen K, Mustapic M, Kapogiannis D, Gorospe MRNA (1413) In extracellular vesicles. Wiley Interdiscip rev RNA. In: 2017; doi 0.1002/wrna

    Google Scholar 

  65. Boyiadzis M, Whiteside TL (2015) Information transfer by exosomes: a new frontier in hematologic malignancies. Blood Rev 29(5):281–290

    Article  CAS  PubMed  Google Scholar 

  66. Weidle UH, Birzele F, Kollmorgen G, Rüger R (2017) The multiple roles of exosomes in metastasis. Cancer Genomics Proteomics 14(1):1–15

    Article  CAS  PubMed  Google Scholar 

  67. Gooding S, Edwards CM (2016) New approaches to targeting the bone marrow microenvironment in multiple myeloma. Curr Opin Pharmacol 28:43–49

    Article  CAS  PubMed  Google Scholar 

  68. Drayer DE, Reidenberg MM (1977) Clinical consequences of polymorphic acetylation of basic drugs. Clin Pharmacol Ther 22(3):251–258

    Article  CAS  PubMed  Google Scholar 

  69. Ingelman-Sundberg M (2004) Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol Sci 25(4):193–200

    Article  CAS  PubMed  Google Scholar 

  70. Rodriguez-Antona C, Ingelman-Sundberg M (2006) Cytochrome P450 pharmacogenetics and cancer. Oncogene 25(11):1679–1691

    Article  CAS  PubMed  Google Scholar 

  71. Ingelman-Sundberg M, Daly A, Nebert D. The Human Cytochrome P450 (CYP) Allele Nomenclature Database. [cited 2017 Mar 10]. Available from.: http://www.cypalleles.ki.se/

  72. Serpe L, Canaparo R, Scordo MG, Spina E (2015) Pharmacogenetics of drug-metabolizing enzymes in Italian populations. Drug Metab Pers Ther 30(2):107–120

    CAS  PubMed  Google Scholar 

  73. Langaee T, Hamadeh I, Chapman AB, Gums JG, Johnson JA (2015) A novel simple method for determining CYP2D6 gene copy number and identifying allele(s) with duplication/multiplication. PLoS One 10(1):e0113808

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kirchheiner J, Schmidt H, Tzvetkov M, Keulen J-THA, Lötsch J, Roots I, Brockmöller J (2007) Pharmacokinetics of codeine and its metabolite morphine in ultra-rapid metabolizers due to CYP2D6 duplication. Pharmacogenomics J 7(4):257–265

    Article  CAS  PubMed  Google Scholar 

  75. Lötsch J, Rohrbacher M, Schmidt H, Doehring A, Brockmöller J, Geisslinger G (2009) Can extremely low or high morphine formation from codeine be predicted prior to therapy initiation? Pain 144(1–2):119–124

    Article  PubMed  Google Scholar 

  76. Bertilsson L, Dahl M-L, Dalén P, Al-Shurbaji A (2002) Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol 53(2):111–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kawanishi C, Lundgren S, Agren H, Bertilsson L (2004) Increased incidence of CYP2D6 gene duplication in patients with persistent mood disorders: ultrarapid metabolism of antidepressants as a cause of nonresponse. A pilot study. Eur J Clin Pharmacol 59(11):803–807

    Article  CAS  PubMed  Google Scholar 

  78. Schenk PW, van Fessem MAC, Verploegh-Van Rij S, Mathot RAA, van Gelder T, Vulto AG, van Vliet M, Lindemans J, Bruijn JA, van Schaik RH (2008) Association of graded allele-specific changes in CYP2D6 function with imipramine dose requirement in a large group of depressed patients. Mol Psychiatry 13(6):597–605

    Article  CAS  PubMed  Google Scholar 

  79. Wang T-L, Diaz LA, Romans K, Bardelli A, Saha S, Galizia G, Choti M, Donehower R, Parmigiani G, Shih IM, Iacobuzio-Donahue C, Kinzler KW, Vogelstein B, Lengauer C, Velculescu VE (2004) Digital karyotyping identifies thymidylate synthase amplification as a mechanism of resistance to 5-fluorouracil in metastatic colorectal cancer patients. Proc Natl Acad Sci U S A 101(9):3089–3094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, Sawyers CL (2001) Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293(5531):876–880

    Article  CAS  PubMed  Google Scholar 

  81. Gmidène A, Saad A, Avet-Loiseau H (2013) 8p21.3 deletion suggesting a probable role of TRAIL-R1 and TRAIL-R2 as candidate tumor suppressor genes in the pathogenesis of multiple myeloma. Med Oncol 30(2):489

    Article  PubMed  Google Scholar 

  82. Duru AD, Sutlu T, Wallblom A, Uttervall K, Lund J, Stellan B, Gahrton G, Nahi H, Alici E (2015) Deletion of chromosomal region 8p21 confers resistance to Bortezomib and is associated with upregulated decoy TRAIL receptor expression in patients with multiple myeloma. PLoS One 10(9):e0138248

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kastner R, Zopf A, Preuner S, Pröll J, Niklas N, Foskett P, Valent P, Lion T, Gabriel C (2014) Rapid identification of compound mutations in patients with Philadelphia-positive leukaemias by long-range next generation sequencing. Eur J Cancer 50(4):793–800

    Article  CAS  PubMed  Google Scholar 

  84. Szankasi P, Schumacher JA, Kelley TW (2016) Detection of BCR-ABL1 mutations that confer tyrosine kinase inhibitor resistance using massively parallel, next generation sequencing. Ann Hematol 95(2):201–210

    Article  CAS  PubMed  Google Scholar 

  85. Baccarani M, Soverini S, De Benedittis C (2014) Molecular monitoring and mutations in chronic myeloid leukemia: how to get the most out of your tyrosine kinase inhibitor. Am Soc Clin Oncol Educ Book:167–175

    Google Scholar 

  86. Jabbour E, Kantarjian H (2016) Chronic myeloid leukemia: 2016 update on diagnosis, therapy, and monitoring. Am J Hematol 91(2):252–265

    Article  CAS  PubMed  Google Scholar 

  87. Malapelle U, Pisapia P, Rocco D, Smeraglio R, di Spirito M, Bellevicine C, Troncone G (2016) Next generation sequencing techniques in liquid biopsy: focus on non-small cell lung cancer patients. Transl Lung Cancer Res 5(5):505–510

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ulivi P (2016) Non-invasive methods to monitor mechanisms of resistance to tyrosine kinase inhibitors in non-small-cell lung cancer: where do we stand? Int J Mol Sci 17(7)

    Google Scholar 

  89. Lunenburg CATC, Henricks LM, Guchelaar H-J, Swen JJ, Deenen MJ, Schellens JHM, Gelderblom H (2016) Prospective DPYD genotyping to reduce the risk of fluoropyrimidine-induced severe toxicity: ready for prime time. Eur J Cancer 54:40–48

    Article  PubMed  Google Scholar 

  90. Rosmarin D, Palles C, Church D, Domingo E, Jones A, Johnstone E, Wang H, Love S, Julier P, Scudder C, Nicholson G, Gonzalez-Neira A, Martin M, Sargent D, Green E, McLeod H, Zanger UM, Schwab M, Braun M, Seymour M, Thompson L, Lacas B, Boige V, Ribelles N, Afzal S, Enghusen H, Jensen SA, Etienne-Grimaldi MC, Milano G, Wadelius M, Glimelius B, Garmo H, Gusella M, Lecomte T, Laurent-Puig P, Martinez-Balibrea E, Sharma R, Garcia-Foncillas J, Kleibl Z, Morel A, Pignon JP, Midgley R, Kerr D, Tomlinson I (2014) Genetic markers of toxicity from capecitabine and other fluorouracil-based regimens: investigation in the QUASAR2 study, systematic review, and meta-analysis. J Clin Oncol 32(10):1031–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Meulendijks D, Henricks LM, Sonke GS, Deenen MJ, Froehlich TK, Amstutz U, Largiadèr CR, Jennings BA, Marinaki AM, Sanderson JD, Kleibl Z, Kleiblova P, Schwab M, Zanger UM, Palles C, Tomlinson I, Gross E, van Kuilenburg AB, Punt CJ, Koopman M, Beijnen JH, Cats A, Schellens JH. Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: a systematic review and meta-analysis of individual patient data. Lancet Oncol 2015;16(16):1639–1650.

    Google Scholar 

  92. Schwab M, Zanger UM, Marx C, Schaeffeler E, Klein K, Dippon J, Kerb R, Blievernicht J, Fischer J, Hofmann U, Bokemeyer C (2008) Eichelbaum M; German 5-FU toxicity study group. Role of genetic and nongenetic factors for fluorouracil treatment-related severe toxicity: a prospective clinical trial by the German 5-FU toxicity study group. J Clin Oncol 26(13):2131–2138

    Article  CAS  PubMed  Google Scholar 

  93. NCI NCI. NCI Dictionary of Cancer Terms. [cited 2017. Available from: https://www.cancer.gov/publications/dictionaries/cancer-terms?cdrid=561717

  94. WHO. Priority MEdicines for Europe and the World Update Report 2013. Available from: http://www.who.int/medicines/areas/priority_medicines/Ch7_4Stratified.pdf

  95. Henricks LM, Lunenburg CATC, Meulendijks D, Gelderblom H, Cats A, Swen JJ, Schellens JH, Guchelaar HJ, Translating DPYD (2015) Genotype into DPD phenotype: using the DPYD gene activity score. Pharmacogenomics 16(11):1277–1286

    Article  PubMed  Google Scholar 

  96. Lee JJ, Beumer JH, Chu E (2016) Therapeutic drug monitoring of 5-fluorouracil. Cancer Chemother Pharmacol 78(3):447–464

    Article  CAS  PubMed  Google Scholar 

  97. Milne C-P, Bryan C, Garafalo S, McKiernan M (2015) Complementary versus companion diagnostics: apples and oranges? Biomark Med 9(1):25–34

    Article  CAS  PubMed  Google Scholar 

  98. Food and Drug Administration. Guidance for industry: In Vitro Companion Diagnostic Devices. 2014. Available from: www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM262327.pdf

  99. Food and Drug Administration. Principles for Codevelopment of an in Vitro Companion Diagnostic Device with a Therapeutic Product. 2016. Available from: https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM510824.pdf

  100. Perez-Gracia JL, Sanmamed MF, Bosch A, Patiño-Garcia A, Schalper KA, Segura V, Bellmunt J, Tabernero J, Sweeney CJ, Choueiri TK, Martín M, Fusco JP, Rodriguez-Ruiz ME, Calvo A, Prior C, Paz-Ares L, Pio R, Gonzalez-Billalabeitia E, Gonzalez Hernandez A, Páez D, Piulats JM, Gurpide A, Andueza M, de Velasco G, Pazo R, Grande E, Nicolas P, Abad-Santos F, Garcia-Donas J, Castellano D, Pajares MJ, Suarez C, Colomer R, Montuenga LM, Melero I (2017) Strategies to design clinical studies to identify predictive biomarkers in cancer research. Cancer Treat Rev 53:79–97

    Article  PubMed  Google Scholar 

  101. Mandrekar SJ, Sargent DJ (2009) Clinical trial designs for predictive biomarker validation: one size does not fit all. J Biopharm Stat 19(3):530–542

    Article  PubMed  PubMed Central  Google Scholar 

  102. Mandrekar SJ, Sargent DJ (2009) Clinical trial designs for predictive biomarker validation: theoretical considerations and practical challenges. J Clin Oncol 27(24):4027–4034

    Article  PubMed  PubMed Central  Google Scholar 

  103. Agenzia Italiana del Farmaco (AIFA). Lista aggiornata dei Registri e dei Piani Terapeutici web based. [cited 2017 Mar 10] Available from http://www.aifa.gov.it/content/lista-aggiornata-dei-registri-e-dei-piani-terapeutici-web-based.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonello Di Paolo M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Di Paolo, A., Arrigoni, E., Galimberti, S., Danesi, R. (2017). Pharmacogenetics and Personalized Medicine. In: Grover, A. (eds) Drug Design: Principles and Applications. Springer, Singapore. https://doi.org/10.1007/978-981-10-5187-6_10

Download citation

Publish with us

Policies and ethics