Controlled Synthesis of in-Plane h-BN-G Heterostructures

  • Mengxi LiuEmail author
Part of the Springer Theses book series (Springer Theses)


The heterostructure of graphene and h-BN is predicted to show many excellent physical properties, such as, bandgap opening, ultra-high carrier mobility, antiferromagnetic and half-semimetallic characteristics. In the first section of this chapter, I will give a brief review of the novel properties and the reported synthesis methods of h-BN-G heterostructures. The process of preparation of h-BN-G in-plane heterostructures is maturing, but some important basic scientific problems are still not solved. For example, the atomic structures and electronic properties on the interface between graphene and h-BN. The second section of this chapter introduces the UHV two-step growth method and the weak influence substrate Ir(111) single crystal with little electron doping effect on graphene.


  1. 1.
    Wang J, Zhao R, Yang M, Liu Z, Liu Z (2013) Inverse relationship between carrier mobility and bandgap in graphene. J Chem Phys 138:084701CrossRefGoogle Scholar
  2. 2.
    Ramasubramaniam A, Naveh D (2011) Carrier-induced antiferromagnet of graphene islands embedded in hexagonal boron nitride. Phys Rev B 84:173Google Scholar
  3. 3.
    Jiang JW, Wang JS, Wang BS (2011) Minimum thermal conductance in graphene and boron nitride superlattice. Appl Phys Lett 99:043109CrossRefGoogle Scholar
  4. 4.
    Pruneda JM (2010) Origin of half-semimetallicity induced at interfaces of C-BN heterostructures. Phys Rev B 81:2149CrossRefGoogle Scholar
  5. 5.
    Kaner RB, Kouvetakis J, Warble CE, Sattler ML, Bartlett N (1987) Boron-carbon-nitrogen materials of graphite-like structure. Mater Res Bull 22:399CrossRefGoogle Scholar
  6. 6.
    Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang ZF, Storr K, Balicas L (2010) atomic layers of hybridized boron nitride and graphene domains. Nat Mater 9:430CrossRefGoogle Scholar
  7. 7.
    Levendorf MP, Kim CJ, Brown L, Huang PY, Havener RW, Muller DA, Park J (2012) Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488:627CrossRefGoogle Scholar
  8. 8.
    Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg KP (2013) In-plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat Nanotechnol 8:119CrossRefGoogle Scholar
  9. 9.
    Liu L, Park J, Siegel DA, McCarty KF, Clark KW, Deng W, Basile L, Carlos Idrobo J, Li AP, Gu G (2014) Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 343:163CrossRefGoogle Scholar
  10. 10.
    Sutter P, Cortes R, Lahiri J, Sutter E (2012) Interface formation in monolayer graphene-boron nitride heterostructures. Nano Lett 12:4869CrossRefGoogle Scholar
  11. 11.
    Lu J, Zhang K, Liu XF, Zhang H, Sum TC, Castro Neto AH, Loh KP (2013) Order–disorder transition in a two-dimensional boron–carbon–nitride alloy. Nat Commun 4:2681Google Scholar
  12. 12.
    Gao Y, Zhang Y, Chen P, Li Y, Liu M, Gao T, Ma D, Chen Y, Cheng Z, Qiu X (2013) Toward single-layer uniform hexagonal boron nitride-graphene patchworks with zigzag linking edges. Nano Lett 13:3439CrossRefGoogle Scholar
  13. 13.
    Sutter P, Sadowski JT, Sutter EA (2010) Chemistry under cover: tuning metal-graphene interaction by reactive intercalation. J Am Chem Soc 132:8175CrossRefGoogle Scholar
  14. 14.
    Usachov D, Fedorov A, Vilkov O, Adamchuk VK, Yashina LV, Bondarenko L, Saranin AA, Grüneis A, Vyalikh DV (2012) Experimental and computational insight into the properties of the lattice-mismatched structures: monolayers of h-BN and graphene on Ir(111). Phys Rev B 86:119CrossRefGoogle Scholar
  15. 15.
    Boneschanscher MP, van der Lit J, Sun Z, Swart I, Liljeroth P, Vanmaekelbergh D (2012) Quantitative atomic resolution force imaging on epitaxial graphene with reactive and nonreactive AFM probes. ACS Nano 6:10216CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Center for NanochemistryCollege of Chemistry and Molecular Engineering, Peking UniversityBeijingPeople’s Republic of China
  2. 2.National Center for Nanoscience and TechnologyChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations