Advertisement

STM Study of Twisted Bilayer Graphene

  • Mengxi LiuEmail author
Chapter
  • 700 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In the 1980s, the invention of scanning tunneling microscope (STM) opened the door to observe the world from the atomic scale. For STM, good resolution is considered to be 0.1 nm lateral resolution and 0.01 nm (10 pm) depth resolution. With this resolution, individual atoms within materials are routinely imaged and manipulated.

References

  1. 1.
    Binnig G, Rohrer H (1983) Scanning tunneling microscopy. IBM J Res Dev 126:236Google Scholar
  2. 2.
    Chen CJ (1993) Introduction to scanning tunneling microscopy (Vol. 4). Oxford University Press on DemandGoogle Scholar
  3. 3.
    Stolyarova E, Flynn GW (2007) High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proc Natl Acad Sci 104:9209CrossRefGoogle Scholar
  4. 4.
    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312CrossRefGoogle Scholar
  5. 5.
    Gao T, Xie S, Gao Y, Liu M, Chen Y, Zhang Y, Liu Z (2011) Growth and atomic-scale characterizations of graphene on multifaceted textured pt foils prepared by chemical vapor deposition. ACS Nano 5:9194CrossRefGoogle Scholar
  6. 6.
    Li G, Luican A, Lopes dos Santos JMB, Castro Neto AH, Reina A, Kong J, Andrei EY (2009) Observation of Van Hove singularities in twisted graphene layers. Nat Phys 6:109Google Scholar
  7. 7.
    Yankowitz M, Xue J, Cormode D, Sanchez-Yamagishi JD, Watanabe K, Taniguchi T, Jarillo-Herrero P, Jacquod P, LeRoy BJ (2012) Emergence of superlattice dirac points in graphene on hexagonal boron nitride. Nat Phys 8:382Google Scholar
  8. 8.
    Zhao L, He R, Rim KT, Schiros T, Kim KS, Zhou H, Gutiérrez C, Chockalingam SP, Arguello CJ, Pálová L (2011) Visualizing individual nitrogen dopants in monolayer graphene. Science 333:999CrossRefGoogle Scholar
  9. 9.
    Rutter GM, Crain JN, Guisinger NP, Li T, First PN, Stroscio JA (2007) Scattering and interference in epitaxial graphene. Science 317:219CrossRefGoogle Scholar
  10. 10.
    Lahiri J, Lin Y, Bozkurt P, Oleynik II, Batzill M (2010) An extended defect in graphene as a metallic wire. Nat Nanotechnol 5:326Google Scholar
  11. 11.
    Červenka J, Katsnelson MI, Flipse CFJ (2009) Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nat Phys 5:840CrossRefGoogle Scholar
  12. 12.
    Dewar MJS (1987) A new mechanism for superconductivity. Angew Chem, Int Ed Engl 26:1273CrossRefGoogle Scholar
  13. 13.
    Gonzalez J (2008) Kohn-Luttinger superconductivity in graphene. Phys Rev B 78:205431CrossRefGoogle Scholar
  14. 14.
    Fleck M, Ole AM, Hedin L (1997) Magnetic phases near the Van Hove singularity in S- and D-band Hubbard models. Phys Rev B 56:3159Google Scholar
  15. 15.
    Chae SJ, Güneş F, Kim KK, Kim ES, Han GH, Kim SM, Shin HJ, Yoon SM, Choi JY, Park MH (2009) Synthesis of large-area graphene layers on poly-nickel substrate by chemical vapor deposition: wrinkle formation. Adv Mater 21:2328CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Center for NanochemistryCollege of Chemistry and Molecular Engineering, Peking UniversityBeijingPeople’s Republic of China
  2. 2.National Center for Nanoscience and TechnologyChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations