Advertisement

Controllable Synthesis of Graphene on Rh

  • Mengxi LiuEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Compared with monolayer graphene, bilayer graphene displays even more complex electronic band structures and intriguing properties. Recent studies reveal that the low-energy band structure of bilayer graphene is extremely sensitive to the stacking order. Two low-energy VHSs, which originate from the two saddle points in the band structure, were observed in the twisted graphene bilayer as two pronounced peaks in the DOS. The VHSs will induce novel physical properties, such as, superconductivity and magnetism. Therefore, the preparation of large area non-AB-stacked bilayer graphene is an efficient way to modify the energy band structure near Fermi level. Combined with the preparation methods of graphene introduced in Chap.  1, especially the growth method of bilayer graphene, I choose segregation growth as a method for preparing non-AB stacking bilayer graphene.

Keywords

Bilayer Graphene Monolayer Graphene High Carbon Solubility Graphic Segregation Graphene Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Yan K, Fu L, Peng H, Liu Z (2013) Designed CVD growth of graphene via process engineering. Acc Chem Res 46:2263CrossRefGoogle Scholar
  2. 2.
    Liu N, Fu L, Dai B, Yan K, Liu X, Zhao R, Zhang Y, Liu Z (2010) Universal segregation growth approach to wafer-size graphene from non-noble metals. Nano Lett 11:297CrossRefGoogle Scholar
  3. 3.
    Ramón ME, Gupta A, Corbet C, Ferrer DA, Movva HCP, Carpenter G, Colombo L, Bourianoff G, Doczy M, Akinwande D (2011) Cmos-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films. ACS Nano 5:7198CrossRefGoogle Scholar
  4. 4.
    Ma D, Liu M, Gao T, Li C, Sun J, Nie Y, Ji Q, Zhang Y, Song X, Zhang Y, Liu Z (2014) High-quality monolayer graphene synthesis on pd foils via the suppression of multilayer growth at grain boundaries. Small 10:4003CrossRefGoogle Scholar
  5. 5.
    Zhang Y, Gomez L, Ishikawa FN, Madaria A, Ryu K, Wang C, Badmaev A, Zhou C (2010) Comparison of graphene growth on single-crystalline and polycrystalline Ni by chemical vapor deposition. J Phys Chem Lett 1:3101CrossRefGoogle Scholar
  6. 6.
    Shelton JC, Patil HR, Blakely JM (1974) Equilibrium segregation of carbon to a nickel (111) surface: a surface phase transition. Surf Sci 43:493CrossRefGoogle Scholar
  7. 7.
    Odahara G, Otani S, Oshima C, Suzuki M, Yasue T, Koshikawa T (2011) In-situ observation of graphene growth on Ni(111). Surf Sci 605:1095CrossRefGoogle Scholar
  8. 8.
    Han GH, Güneş F, Bae JJ, Kim ES, Chae SJ, Shin HJ, Choi JY, Pribat D, Lee YH (2011) Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett 11:4144CrossRefGoogle Scholar
  9. 9.
    Reina A, Thiele S, Jia X, Bhaviripudi S, Dresselhaus MS, Schaefer JA, Kong J (2009) Growth of large-area single-and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res 2:509CrossRefGoogle Scholar
  10. 10.
    Sicot M, Bouvron S, Zander O, Rüdiger U, Dedkov YS, Fonin M (2010) Nucleation and growth of nickel nanoclusters on graphene Moiré on Rh(111). Appl Phys Lett 96:093115CrossRefGoogle Scholar
  11. 11.
    Xue Y, Wu B, Guo Y, Huang L, Jiang L, Chen J, Geng D, Liu Y, Hu W, Yu G (2011) Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition. Nano Res 4:1208CrossRefGoogle Scholar
  12. 12.
    Ago H, Ito Y, Mizuta N, Yoshida K, Hu B, Orofeo CM, Tsuji M, Ikeda K, Mizuno S (2010) Epitaxial chemical vapor deposition growth of single-layer graphene over cobalt film crystallized on sapphire. ACS Nano 4:7407CrossRefGoogle Scholar
  13. 13.
    Kim E, An H, Jang H, Cho WJ, Lee N, Lee WG, Jung J (2011) Growth of few-layer graphene on a thin cobalt film on a Si/SiO2 substrate. Chem Vap Deposition 17:9CrossRefGoogle Scholar
  14. 14.
    Sutter E, Albrecht P, Sutter P (2009) Graphene growth on polycrystalline Ru thin films. Appl Phys Lett 95:133109CrossRefGoogle Scholar
  15. 15.
    Sutter E, Acharya DP, Sadowski JT, Sutter P (2009) Scanning tunneling microscopy on epitaxial bilayer graphene on ruthenium (0001). Appl Phys Lett 94:133101CrossRefGoogle Scholar
  16. 16.
    Sutter P, Hybertsen MS, Sadowski JT, Sutter E (2009) Electronic structure of few-layer epitaxial graphene on Ru (0001). Nano Lett 9:2654CrossRefGoogle Scholar
  17. 17.
    Que Y, Xiao W, Fei X, Chen H, Huang L, Du SX, Gao HJ (2014) Epitaxial growth of large-area bilayer graphene on Ru (0001). Appl Phys Lett 104:093110CrossRefGoogle Scholar
  18. 18.
    Nie S, Walter AL, Bartelt NC, Starodub E, Bostwick A, Rotenberg E, McCarty KF (2011) Growth from below: graphene bilayers on Ir (111). ACS Nano 5:2298CrossRefGoogle Scholar
  19. 19.
    Liu X, Fu L, Liu N, Gao T, Zhang Y, Liao L, Liu Z (2011) Segregation growth of graphene on Cu–Ni Alloy for precise layer control. J Phys Chem C 115:11976CrossRefGoogle Scholar
  20. 20.
    Chen S, Cai W, Piner RD, Suk JW, Wu Y, Ren Y, Kang J, Ruoff RS (2011) Synthesis and characterization of large-area graphene and graphite films on commercial Cu–Ni alloy foils. Nano Lett 11:3519CrossRefGoogle Scholar
  21. 21.
    Wu Y,Chou H, Ji H, Wu Q, Chen S, Jiang W, Hao Y, Kang J, Ren Y, Piner RD (2012) Growth mechanism and controlled synthesis of AB-stacked bilayer graphene on Cu–Ni alloy foils. ACS Nano 6:7731Google Scholar
  22. 22.
    Liu M, Gao Y, Zhang Y, Zhang Y, Ma D, Ji Q, Gao T, Chen Y, Liu Z (2013) Single and polycrystalline graphene on Rh(111) following different growth mechanisms. Small 9:1360CrossRefGoogle Scholar
  23. 23.
    Voloshina EN, Dedkov YS, Torbrügge S, Thissen A, Fonin M (2012) Graphene on Rh(111): scanning tunneling and atomic force microscopies studies. Appl Phys Lett 100:241606CrossRefGoogle Scholar
  24. 24.
    Wang B, Caffio M, Bromley C, Früchtl H, Schaub R (2010) Coupling epitaxy, chemical bonding, and work function at the local scale in transition metal-supported graphene. ACS Nano 4:5773CrossRefGoogle Scholar
  25. 25.
    Reina A, Son H, Jiao L, Fan B, Dresselhaus MS, Liu Z, Kong J (2008) Transferring and identification of single-and few-layer graphene on arbitrary substrates. J Phys Chem C 112:17741CrossRefGoogle Scholar
  26. 26.
    Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma LP, Zhang Z, Fu Q, Peng LM (2012) Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun 3:23Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Center for NanochemistryCollege of Chemistry and Molecular Engineering, Peking UniversityBeijingPeople’s Republic of China
  2. 2.National Center for Nanoscience and TechnologyChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations