Advertisement

Introduction

  • Mengxi LiuEmail author
Chapter
  • 451 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Graphene, a two-dimensional material consisted of sp2 hybridization carbon atoms, has fascinated much attention owing to its extraordinary electronic, optical, magnetic, thermal, and mechanical properties, such as high carrier mobility (~105 cm2 V−1 s−1), high Young’s modulus (~1.0 TPa), high thermal conductivity (~5000 W m−1 K−1) and optical transmittance (~97.7%).

References

  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666Google Scholar
  2. 2.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI IV, Grigorieva SV Dubonos, Firsov AA (2005) Two-dimensional gas of massless dirac fermions in graphene. Nature 438:197CrossRefGoogle Scholar
  3. 3.
    Castro Neto AH, Guinea F, Peresv NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109Google Scholar
  4. 4.
    Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100:016602CrossRefGoogle Scholar
  5. 5.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183CrossRefGoogle Scholar
  6. 6.
    Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U, Maan JC, Boebinger GS, Kim P, Geim AK (2007) Room-temperature quantum hall effect in graphene. Science 315:1379CrossRefGoogle Scholar
  7. 7.
    Zhang Y, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum hall effect and Berry’s phase in graphene. Nature 438:201CrossRefGoogle Scholar
  8. 8.
    Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192Google Scholar
  9. 9.
    Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320:1308CrossRefGoogle Scholar
  10. 10.
    Liao L, Lin YC, Bao M, Cheng R, Bai J, Liu Y, Qu Y, Wang KL, Huang Y, Duan X (2010) High-speed graphene transistors with a self-aligned nanowire gate. Nature 467:305CrossRefGoogle Scholar
  11. 11.
    Meric I, Dean CR, Han SJ, Wang L, Jenkins KA, Hone J, Shepard KL (2011) High-frequency performance of graphene field effect transistors with saturating IV-characteristics, 211. arXiv:1112.2777
  12. 12.
    Bai J, Zhong X, Jiang S, Huang Y, Duan X (2010) Graphene nanomesh. Nat Nanotechnol 5:190CrossRefGoogle Scholar
  13. 13.
    Pan Z, Liu N, Fu L, Liu Z (2011) Wrinkle engineering: a new approach to massive graphene nanoribbon arrays. J Am Chem Soc 133:17578CrossRefGoogle Scholar
  14. 14.
    Han MY, Özyilmaz B, Zhang Y, Kim P (2007) Energy band-gap engineering of graphene nanoribbons. Phys Rev Lett 98:206805CrossRefGoogle Scholar
  15. 15.
    Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI (2011) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574Google Scholar
  16. 16.
    Mak KF, Lui CH, Shan J, Heinz TF (2009) Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys Rev Lett 102:256405CrossRefGoogle Scholar
  17. 17.
    Oostinga JB, Heersche HB, Liu X, Morpurgo AF, Vandersypen LMK (2008) Gate-induced insulating state in bilayer graphene devices. Nat Mater 7:151CrossRefGoogle Scholar
  18. 18.
    McCann E (2006) Asymmetry gap in the electronic band structure of bilayer graphene. Phys Rev B 74:161403CrossRefGoogle Scholar
  19. 19.
    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E (2006) Controlling the electronic structure of bilayer graphene. Science 313:951CrossRefGoogle Scholar
  20. 20.
    Zhang Y, Tang TT, Girit C, Hao Z, Martin MC, Zettl A, Crommie MF, Shen YR, Wang F (2009) Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459:820CrossRefGoogle Scholar
  21. 21.
    Li G, Luican A, Lopes dos Santos JMB, Castro Neto AH, Reina A, Kong J, Andrei EY (2009) Observation of Van Hove singularities in twisted graphene layers. Nat Phys 6:109Google Scholar
  22. 22.
    Yan W, Liu M, Dou RF, Meng L, Feng L, Chu ZD, Zhang Y, Liu Z, Nie JC, He L (2012) Angle-dependent Van Hove singularities in a slightly twisted graphene bilayer. Phys Rev Lett 109:249Google Scholar
  23. 23.
    Yan W, Meng L, Liu M, Qiao JB, Chu ZD, Dou RF, Liu Z, Nie JC, Naugle DG, He L (2014) Angle-dependent Van Hove singularities and their breakdown in twisted graphene bilayers. Phys Rev B 90:5758Google Scholar
  24. 24.
    Zhou SY, Gweon GH, Fedorov AV, First PN, De Heer WA, Lee DH, Guinea F, Castro Neto AH, Lanzara A (2007) Substrate-induced bandgap opening in epitaxial graphene. Nat Mater 6:770Google Scholar
  25. 25.
    Wang M, Fu L, Gan L, Zhang C, Rümmeli M, Bachmatiuk A, Huang K, Fang Y, Liu Z (2013) CVD growth of large area smooth-edged graphene nanomesh by nanosphere lithography. Sci Rep 3:142Google Scholar
  26. 26.
    Liao L, Peng H, Liu Z (2014) Chemistry makes graphene beyond graphene. J Am Chem Soc 136:12194CrossRefGoogle Scholar
  27. 27.
    Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2008) Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323:610CrossRefGoogle Scholar
  28. 28.
    Balog R, Jørgensen B, Nilsson L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S (2010) Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat Mater 9:315CrossRefGoogle Scholar
  29. 29.
    Ci L, Song L, Jin C, Jariwala D, Wu D, Li Y, Srivastava A, Wang ZF, Storr K, Balicas L (2010) Atomic layers of hybridized boron nitride and graphene domains. Nat Mater 9:430CrossRefGoogle Scholar
  30. 30.
    Ding Y, Wang Y, Ni J (2009) Electronic properties of graphene nanoribbons embedded in boron nitride sheets. Appl Phys Lett 95:123105CrossRefGoogle Scholar
  31. 31.
    Levendorf MP, Kim CJ, Brown L, Huang PY, Havener RW, Muller DA, Park J (2012) Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 488:627CrossRefGoogle Scholar
  32. 32.
    Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg KP (2013) In-Plane heterostructures of graphene and hexagonal boron nitride with controlled domain sizes. Nat Nanotechnol 8:119CrossRefGoogle Scholar
  33. 33.
    da Rocha Martins J, Chacham H (2010) Disorder and segregation in B–C–N graphene-type layers and nanotubes: tuning the band gap. ACS Nano 5:385Google Scholar
  34. 34.
    Howard JB, McKinnon JT, Makarovsky Y, Lafleur AL, Johnson ME (1991) Fullerenes C60 and C70 in flames. Nature 352:139Google Scholar
  35. 35.
    Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294:1317CrossRefGoogle Scholar
  36. 36.
    Huang PY, Ruiz-Vargas CS, van der Zande AM, Whitney WS, Levendorf MP, Kevek JW, Garg S, Alden JS, Hustedt CJ, Zhu Y (2011) Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469:389CrossRefGoogle Scholar
  37. 37.
    Abergel DSL, Fal’Ko VI (2007) Optical and magneto-optical far-infrared properties of bilayer graphene. Phys Rev B 75:1418Google Scholar
  38. 38.
    Van Hove L (1953) The occurrence of singularities in the elastic frequency distribution of a crystal. Phys Rev 89:1189CrossRefGoogle Scholar
  39. 39.
    Dewar MJS (1987) A new mechanism for superconductivity. Angew Chem Int Ed Engl 26:1273CrossRefGoogle Scholar
  40. 40.
    Gonzalez J (2008) Kohn-Luttinger superconductivity in graphene. Phys Rev B 78:205431CrossRefGoogle Scholar
  41. 41.
    Fleck M, Ole AM, Hedin L (1997) Magnetic phases near the Van Hove singularity in S- and D-B and Hubbard models Phys Rev B 56:3159Google Scholar
  42. 42.
    Li G, Luican A, Andrei EY (2009) Scanning tunneling spectroscopy of graphene on graphite. Phys Rev Lett 102:176804CrossRefGoogle Scholar
  43. 43.
    Miller DL, Kubista KD, Rutter GM, Ruan M, De Heer WA, First PN, Stroscio JA (2009) Observing the quantization of zero mass carriers in graphene. Science 324:924CrossRefGoogle Scholar
  44. 44.
    Britnell L, Ribeiro RM, Eckmann A, Jalil R, Belle BD, Mishchenko A, Kim YJ, Gorbachev RV, Georgiou T, Morozov SV (2013) Strong light-matter interactions in heterostructures of atomically thin films. Science 340:1311Google Scholar
  45. 45.
    Rechtsman MC, Zeuner JM, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, Szameit A (2013) Photonic floquet topological insulators. Nature 496:196CrossRefGoogle Scholar
  46. 46.
    Valla T, Fedorov AV, Johnson PD, Glans PA, McGuinness C, Smith KE, Andrei EY, Berger H (2004) Quasiparticle spectra, charge-density waves, superconductivity, and electron-phonon coupling in 2H-NbSe2. Phys Rev Lett 92:086401CrossRefGoogle Scholar
  47. 47.
    Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern TI, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite Nat Nanotechnol 3:563Google Scholar
  48. 48.
    Compton OC, Nguyen SBT (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711CrossRefGoogle Scholar
  49. 49.
    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312CrossRefGoogle Scholar
  50. 50.
    Losurdo M, Giangregorio MM, Capezzuto P, Bruno G (2011) Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys Chem Chem Phys 13:20836CrossRefGoogle Scholar
  51. 51.
    Li X, Cai W, Colombo L, Ruoff RS (2009) Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett 9:4268CrossRefGoogle Scholar
  52. 52.
    Wood JD, Schmucker SW, Lyons AS, Pop E, Lyding JW (2011) Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett 11:4547CrossRefGoogle Scholar
  53. 53.
    Han GH, Güneş F, Bae JJ, Kim ES, Chae SJ, Shin HJ, Choi JY, Pribat D, Lee YH (2011) Influence of copper morphology in forming nucleation seeds for graphene growth. Nano Lett 11:4144CrossRefGoogle Scholar
  54. 54.
    Li X, Magnuson CW, Venugopal A, Tromp RM, Hannon JB, Vogel EM, Colombo L, Ruoff RS (2011) Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J Am Chem Soc 133:2816CrossRefGoogle Scholar
  55. 55.
    Sun Z, Yan Z, Yao J, Beitler E, Zhu Y, Tour JM (2010) Growth of graphene from solid carbon sources. Nature 468:549CrossRefGoogle Scholar
  56. 56.
    Wofford JM, Nie S, McCarty KF, Bartelt NC, Dubon OD (2010) ‘Graphene islands on Cu foils: the interplay between shape, orientation, and defects. Nano Lett 10:4890CrossRefGoogle Scholar
  57. 57.
    Hao Y, Bharathi MS, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B (2013) The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342:720CrossRefGoogle Scholar
  58. 58.
    Gao L, Ren W, Xu H, Jin L, Wang Z, Ma T, Ma LP, Zhang Z, Fu Q, Peng LM (2012) Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat Commun 3:23Google Scholar
  59. 59.
    Dai B, Fu L, Zou Z, Wang M, Xu H, Wang S, Liu Z (2011) Rational design of a binary metal alloy for chemical vapour deposition growth of uniform single-layer graphene. Nat Commun 2:193CrossRefGoogle Scholar
  60. 60.
    Sun J, Gao T, Song X, Zhao Y, Lin Y, Wang H, Ma D, Chen Y, Xiang W, Wang J, Zhang Y, Liu Z (2014) Direct growth of high-quality graphene on high-κ dielectric SrTiO3 substrates. J Am Chem Soc 136:6574CrossRefGoogle Scholar
  61. 61.
    Chen J, Guo Y, Jiang L, Xu Z, Huang L, Xue Y, Geng D, Wu B, Hu W, Yu G (2014) Near-equilibrium chemical vapor deposition of high-quality single-crystal graphene directly on various dielectric substrates. Adv Mater 26:1348CrossRefGoogle Scholar
  62. 62.
    Hagstrom S, Lyon HB, Somorjai GA (1965) Surface structures on the clean platinum (100) surface. Phys Rev Lett 15:491CrossRefGoogle Scholar
  63. 63.
    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2008) Large area few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30CrossRefGoogle Scholar
  64. 64.
    Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahh JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706CrossRefGoogle Scholar
  65. 65.
    Liu N, Fu L, Dai B, Yan K, Liu X, Zhao R, Zhang Y, Liu Z (2010) Universal segregation growth approach to wafer-size graphene from non-noble metals. Nano Lett 11:297CrossRefGoogle Scholar
  66. 66.
    Yan K, Peng H, Zhou Y, Li H, Liu Z (2011) Formation of bilayer bernal graphene: layer-by-layer epitaxy via chemical vapor deposition. Nano Lett 11:1106CrossRefGoogle Scholar
  67. 67.
    Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229CrossRefGoogle Scholar
  68. 68.
    Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877CrossRefGoogle Scholar
  69. 69.
    Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872CrossRefGoogle Scholar
  70. 70.
    Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B: Condens Matter 54:17954CrossRefGoogle Scholar
  71. 71.
    Son YW, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97:089901CrossRefGoogle Scholar
  72. 72.
    Park H, Wadehra A, Wilkins JW, Castro Neto AH (2012) Magnetic states and optical properties of single-layer carbon-doped hexagonal boron nitride. Appl Phys Lett 100:253115Google Scholar
  73. 73.
    Giovannetti G, Khomyakov PA, Brocks G, Kelly PJ, van den Brink J (2007) Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys Rev B 76:073103CrossRefGoogle Scholar
  74. 74.
    Seol G, Guo J (2011) Bandgap opening in boron nitride confined armchair graphene nanoribbon. Appl Phys Lett 98:143107CrossRefGoogle Scholar
  75. 75.
    Zhao R, Wang J, Yang M, Liu Z, Liu Z (2012) BN-embedded graphene with a ubiquitous gap opening. J Phys Chem C 116:21098CrossRefGoogle Scholar
  76. 76.
    Shinde PP, Kumar V (2011) Direct band gap opening in graphene by BN doping: Ab initio calculations. Phys Rev B, Condens Matter 84:9682CrossRefGoogle Scholar
  77. 77.
    Fan X (2012) Band gap opening of graphene by doping small boron nitride domains. Nanoscale 4:2157CrossRefGoogle Scholar
  78. 78.
    Xu B, Lu YH, Feng YP, Lin JY (2010) Density functional theory study of BN-doped graphene superlattice: role of geometrical shape and size. J Appl Phys 108:073711CrossRefGoogle Scholar
  79. 79.
    Bhowmick S, Singh AK, Yakobson BI (2011) Quantum dots and nanoroads of graphene embedded in hexagonal boron nitride. J Phys Chem C 115:9889CrossRefGoogle Scholar
  80. 80.
    Kan M, Zhou J, Wang Q, Sun Q, Jena P (2011) Tuning the band gap and magnetic properties of BN sheets impregnated with graphene flakes. Phys Rev B 84:4327CrossRefGoogle Scholar
  81. 81.
    Li J, Shenoy VB (2011) Graphene quantum dots embedded in hexagonal boron nitride sheets. Appl Phys Lett 98:013105CrossRefGoogle Scholar
  82. 82.
    Wang J, Zhao R, Liu Z, Liu Z (2013) Widely tunable carrier mobility of boron nitride-embedded graphene. Small 9:1373CrossRefGoogle Scholar
  83. 83.
    Jun S, Li X, Meng F, Ciobanu CV (2011) Elastic properties of edges in BN and SiC nanoribbons and of boundaries in C-BN superlattices: a density functional theory study. Phys Rev B: Condens Matter 83:1127CrossRefGoogle Scholar
  84. 84.
    Jiang JW, Wang JS, Wang BS (2011) Minimum thermal conductance in graphene and boron nitride superlattice. Appl Phys Lett 99:043109CrossRefGoogle Scholar
  85. 85.
    Ramasubramaniam A, Naveh D (2011) Carrier-induced antiferromagnet of graphene islands embedded in hexagonal boron nitride. Phys Rev B 84:173Google Scholar
  86. 86.
    Pruneda JM (2010) Origin of half-semimetallicity induced at interfaces of C-BN heterostructures. Phys Rev B 81:2149CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Center for NanochemistryCollege of Chemistry and Molecular Engineering, Peking UniversityBeijingPeople’s Republic of China
  2. 2.National Center for Nanoscience and TechnologyChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations