Skip to main content

Impulse Discharge Voltage Prediction of Air Gaps

  • Chapter
  • First Online:
Air Insulation Prediction Theory and Applications

Part of the book series: Power Systems ((POWSYS))

Abstract

The lightning overvoltage and switching overvoltage in power systems are both impulse voltages with short duration time and large change rate, under which the air gap breakdown characteristics are different from those under steady voltages. This chapter firstly introduces the air gap breakdown characteristics under lightning and switching impulse voltages. Then, the air insulation prediction model is used to predict the switching impulse discharge voltages, lightning impulse discharge voltages and volt-time characteristic curves of air gaps with different geometries and under different voltage waveforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yan Z, Zhu DH (2007) High voltage insulation technology, 2nd edn. China Electric Power Press, Beijing

    Google Scholar 

  2. Wan QF, Huo F, Xie L et al (2012) Summary of research on flashover characteristics of long air-gaps. High Volt Eng 38(10):2499–2505

    Google Scholar 

  3. General Electric Co. (1982) Transmission line reference book-345 kV and above, 2nd edn. Electric Power Research Institute, Palo Alto, USA

    Google Scholar 

  4. Lings R (2005) EPRI AC transmission line reference book-200 kV and above, 3rd edn. Electric Power Research Institute, Palo Alto, USA

    Google Scholar 

  5. Les Renardières Group (1977) Positive discharges in long air gap discharges at Les Renardières–1975 results and conclusions. Electra 53:31–153

    Google Scholar 

  6. Les Renardières Group (1981) Negative discharges in long air gap discharges at Les Renardières–1978 results. Electra 74:67–216

    Google Scholar 

  7. Cortina R, Garbagnati E, Pigini A et al (1985) Switching impulse strength of phase-to-earth UHV external insulation-research at the 1000 kV project. IEEE Trans Power Appar Syst 104(11):3161–3168

    Article  Google Scholar 

  8. Gallet G, Leroy G, Lacey R et al (1975) General expression for positive switching impulse strength valid up to extra long air gaps. IEEE Trans Power Appar Syst 94(6):1989–1993

    Article  Google Scholar 

  9. Kishizima I, Matsumoto K, Watanabe Y (1984) New facilities for phase-to-phase switching impulse tests and some test results. IEEE Trans Power Appar Syst 103(6):1211–1216

    Article  Google Scholar 

  10. IEC 60071-2 (1996) Insulation coordination—part 2: application guide

    Google Scholar 

  11. Rizk FAM (1989) A model for switching impulse leader inception and breakdown of long air gaps. IEEE Trans Power Deliv 4(1):596–606

    Article  Google Scholar 

  12. Rizk FAM (1989) Switching impulse strength of air insulation: leader inception criterion. IEEE Trans Power Deliv 4(4):2187–2195

    Article  Google Scholar 

  13. Carrara G, Thione L (1976) Switching surge strength of large air gaps: a physical approach. IEEE Trans Power Appar Syst 95(2):512–524

    Article  Google Scholar 

  14. Chen WJ, Zeng R, He HX (2013) Research progress of long air gap discharge. High Volt Eng 39(6):1281–1295

    Google Scholar 

  15. Paris L (1967) Influence of air gap characteristics on line-to-ground switching surge strength. IEEE Trans Power Appar Syst 86(8):936–947

    Article  Google Scholar 

  16. Paris L, Cortina R (1968) Switching and lightning impulse discharge characteristics of large air gaps and long insulator strings. IEEE Trans Power Appar Syst 87(4):947–957

    Article  Google Scholar 

  17. Thione L, Pigini A, Allen NL (1992) Guidelines for the evaluation of the dielectric strength of external insulation. CIGRE Brochure, Paris, France

    Google Scholar 

  18. Watanabe Y (1967) Switching surge flashover characteristics of extremely long air gaps. IEEE Trans Power Appar Syst 86(8):933–936

    Article  Google Scholar 

  19. Qiu ZB, Ruan JJ, Tang LZ et al (2018) Energy storage features and discharge voltage prediction of air gaps. Trans China Electrotech Soc 33(1):185–194

    Google Scholar 

  20. Wang Y, Wen XS, Lan L et al (2014) Breakdown characteristics of long air gap with negative polarity switching impulse. IEEE Trans Dielectr Electr Insul 21(2):603–611

    Article  Google Scholar 

  21. Qiu ZB, Ruan JJ, Xu WJ et al (2017) Energy storage features and a predictive model for switching impulse flashover voltages of long air gaps. IEEE Trans Dielectr Electr Insul 24(5):2703–2711

    Article  Google Scholar 

  22. The subcommittee on correlation of laboratory data of EEI-NEMA joint committee on insulation co-ordination (1937) Flashover characteristics of rod gaps and insulators. Trans AIEE 56(6): 712–714

    Google Scholar 

  23. IEEE Std 4-1995. IEEE standard techniques for high-voltage testing

    Google Scholar 

  24. Abdullah M, Kuffel E (1965) Development of spark discharge in nonuniform field gaps under impulse voltages. Proc IEE 112(5):1018–1024

    Google Scholar 

  25. Mavroidis PN, Mikropoulos PN, Stassinopoulos CA (2007) Discharge characteristics in short rod-plane gaps under lightning impulse voltages of both polarities. In: Paper presented at the 42nd international universities power engineering conference, Brighton, UK, 4–6 September 2007

    Google Scholar 

  26. Qiu ZB, Ruan JJ, Huang CP et al (2018) A numerical approach for lightning impulse flashover voltage prediction of typical air gaps. J Electr Eng Technol 13(3):1326–1336

    Google Scholar 

  27. Ancajima A, Carrus A, Cinieri E et al (2007) Breakdown characteristics of air spark-gaps stressed by standard and short-tail lightning impulses: experimental results and comparison with time to sparkover models. J Electrostat 65(5–6):282–288

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibin Qiu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd. and Science Press, Beijing

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Qiu, Z., Ruan, J., Shu, S. (2019). Impulse Discharge Voltage Prediction of Air Gaps. In: Air Insulation Prediction Theory and Applications. Power Systems. Springer, Singapore. https://doi.org/10.1007/978-981-10-5163-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5163-0_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5162-3

  • Online ISBN: 978-981-10-5163-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics