Skip to main content

Voltage-Dependent Calcium Channels: From Physiology to Diseases

  • Chapter
  • First Online:
  • 788 Accesses

Abstract

“Knowing our genes help knowing our enemy and knowing our therapy”. Ion channels are expressed in every living cell that belongs to a group of membrane proteins that are important for in and out flux of ions of the cells. A mutation in the encoding sequences of calcium channel causes channelopathies. It can be either congenital or acquired. Mutation of ion channels can alter activation, ion selectivity and abnormal gain of function in humans. Acquired forms of channelopathies cause autoimmune disorders or drugs administration. Human Genome Project data revealed that several hundreds of different ion channel genes can be existent. This specific ion channel subunit which is encoded by specific genes assembling with other subunits to form an active membrane pore for selective ions. These disorders are very rare and therefore physicians, patients and scientists are usually not familiar with all aspects of the clinical symptoms. This chapter deals the current knowledge of different calcium channelopathies and also discusses the recent updates in the calcium ion deficit diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams P, Snutch T (2007) Calcium channelopathies: voltage-gated calcium channels. Subcell Biochem 45:215–251

    Article  CAS  PubMed  Google Scholar 

  • Adams P, Garcia E, David L, Mulatz K, Spacey S, Snutch T (2009) CaV2.1 P/Q-type calcium channel alternative splicing affects the functional impact of familial hemiplegic migraine mutations: implications for calcium channelopathies. Channels 3:110–121

    Article  CAS  PubMed  Google Scholar 

  • Adriano S, Zhorov B, Spafford J (2012) Cav 3 T-type calcium channels. Membr Transport Signalling 1:467–491

    Article  Google Scholar 

  • Ando K (2013) L−/N-type calcium channel blockers and proteinuria. Curr Hypertens Rev 9:210–218

    Article  CAS  PubMed  Google Scholar 

  • Angelita T, Pivotto F, Tommaso F, Tiziana C, Arn M, Maagdenberg V, Pietrobon D (2005) Specific kinetic alterations of human CaV2.1 calcium channels produced by mutation S218L causing familial hemiplegic migraine and delayed cerebral edema and coma after minor head trauma. J Biol Chem 280:17678–17686

    Article  Google Scholar 

  • Biel M, Wahl-Schott C, Michalakis S, Zong X (2009) Hyperpolarizationactivated cation channels: from genes to function. Physiol Rev 89:847–885

    Article  CAS  PubMed  Google Scholar 

  • Breitenkamp A, Matthes J, Herzig S (2015) Voltage-gated calcium channels and autism Spectrum disorders. Curr Mol Pharmacol 8:123–132

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Tsien R (2005) Effects of familial hemiplegic migraine type 1 mutations on neuronal P/Q-type Ca2+ channel activity and inhibitory synaptic transmission. Proc Natl Acad Sci U S A 102:2590–2595

    Google Scholar 

  • Catterall W, Swanson T (2015) Structural basis for pharmacology of voltage-gated sodium and calcium channels. Mol Pharmacol 88:141–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakravarti B, Chattopadhyay N, Brown E (2012) Signaling through the extracellular calcium-sensing receptor (CaSR). Adv Exp Med Biol 740:103–142

    Article  CAS  PubMed  Google Scholar 

  • Chiang C, Huang C, Chieng H, Chang Y, Chang D, Chen J, Chen Y, Chen Y, Shin H, Campbell K, Chen C (2009) The Ca(v)3.2 T-type Ca(2+) channel is required for pressure overload-induced cardiac hypertrophy in mice. Circ Res 104:522–530

    Article  CAS  PubMed  Google Scholar 

  • Dolphin A (2006) A short history of voltage-gated calcium channels. Br J Pharmacol 147:S56–S62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doyle M, Egan J (2007) Mechanisms of action of GLP-1 in the pancreas. Pharmacol Therapeutics 113:546–593

    Article  CAS  Google Scholar 

  • Dworakowska B, Krzysztof D (2000) Ion channels-related diseases. Acta Biochim Pol 47:685–703

    CAS  PubMed  Google Scholar 

  • Fang H, Patanavanich S, Rajagopal S, Yi X, Gill M, Sando J, Kamatchi G (2006) Inhibitory role of Ser-425 of the alpha1 2.2 subunit in the enhancement of Cav 2.2 currents by phorbol-12-myristate, 13-acetate. J Biol Chem 281:20011–20017

    Article  CAS  PubMed  Google Scholar 

  • Francois A, Laffray S, Pizzoccaro A, Eschalier A, Bourinet E (2014) T-type calcium channels in chronic pain: mouse models and specific blockers. Pflugers Arch 466:707–714

    Article  CAS  PubMed  Google Scholar 

  • George A (2004) Inherited Channelopathies associated with epilepsy. Epilepsy Currunt 4:65–70

    Article  Google Scholar 

  • Habermann C, O’Brien B, Wässle H, Protti D (2003) AII Amacrine cells express L-type calcium channels at their output synapses. J Neurosci 23:6904–6913

    CAS  PubMed  Google Scholar 

  • Hoda J, Zaghetto F, Koschak A, Striessnig J (2005) Congenital stationary night blindness type 2 mutations S229P, G369D, L1068P, and W1440X alter channel gating or functional expression of Ca(v)1.4 L-type Ca2+ channels. J Neurosci 25:252–259

    Article  CAS  PubMed  Google Scholar 

  • Imbrici P, Liantonio A, Camerino G, De Bellis M, Camerino C, Mele A, Giustino A, Pierno S, De Luca A, Tricarico D, Desaphy J, Conte D (2016) Therapeutic approaches to genetic ion channelopathies and perspectives in drug discovery. Front Pharmacol 7:1–28

    Article  Google Scholar 

  • Isabelle B, Alexandre M, Leigh A, Arnaud M, Philippe L (2006) Voltage-gated calcium channels in genetic diseases. Biochim Biophys Acta, Mol Cell Res 1763:1169–1174

    Article  Google Scholar 

  • Jessica K, Zivkovic S (2011) Autoimmune Neuromuscular Disorders. Curr Neuropharmacol 18:400–408

    Google Scholar 

  • Kaja S, Paynec A, Nielsenb E, Thompsone C, van den Maagdenbergf A, Koulenc P, Snutch T (2015) Differential cerebellar GABAA receptor expression in mice with mutations in CaV2.1 (P/Q-type) calcium channels. Neurosci 304:198–208

    Article  CAS  Google Scholar 

  • Kamatchi G, Franke R, Lynch CI, Sando J (2004) Identification of sites responsible for potentiation of type 2.3 calcium currents by acetyl-beta-methylcholine. J Biol Chem 279:4102–4109

    Article  CAS  PubMed  Google Scholar 

  • Kawaida M, Abe T, Nakanishi T, Miyahara Y, Yamagishi H, Sakamoto M, Yamada T (2016) A case of timothy syndrome with adrenal medullary dystrophy. Pathol Int 66:587–592

    Article  CAS  PubMed  Google Scholar 

  • Kim J (2014) Channelopathies. Korean J Pediatr 57:1–18

    Article  PubMed  PubMed Central  Google Scholar 

  • Koichi H, Shu W, Naoki S, Yuri O, Koichiro H, Takao S (2007) Ca2+ channel subtypes and pharmacology in the kidney. Circ Res 100:342–353

    Article  Google Scholar 

  • Landstrom A, Boczek N, Ye D, Miyake C, De la Uz C, Allen H, Ackerman M, Kim J (2016) Novel long QT syndrome-associated missense mutation, L762F, in CACNA1C-encoded L-type calcium channel imparts a slower inactivation tau and increased sustained and window current. Int J Cardiol 220:290–298

    Article  PubMed  Google Scholar 

  • Marino M, Gomes R, Eduardo L, Marcelo L, Bigal E (2010) Migraine and epilepsy: a focus on overlapping clinical, Pathophysiological, molecular, and therapeutic aspects. Curr Pain Headache Rep 14:276–283

    Article  Google Scholar 

  • Matthews E, Labrum R, Sweeney M, Sud R, Haworth A, Chinnery P, Meola G, Schorge S, Kullmann D, Davis M, Hanna M (2009) Voltage sensor charge loss accounts for most cases of hypokalemic periodic paralysis. Neurol 72:1544–1547

    Article  CAS  Google Scholar 

  • Miljanich G (2004) Ziconotide: neuronal calcium channel blocker for treating severe chronic pain. Curr Med Chem 11:3029–3040

    Article  CAS  PubMed  Google Scholar 

  • Muller D, Zimmering M, Roehr C (2004) Should nifedipine be used to counter low blood sugar levels in children with persistent hyperinsulinaemic hypoglycaemia? Arch Dis child 89:83–85

    Article  PubMed  PubMed Central  Google Scholar 

  • Ophoff R, Terwindt G, Vergouwe M, van Eijk R, Oefner P, Hoffman S (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87:543–552

    Article  CAS  PubMed  Google Scholar 

  • Ornoy A, Weinstein-Fudim L, Ergaz Z (2016) Genetic syndromes, maternal diseases and antenatal factors associated with autism Spectrum disorders (ASD). Front Neurosci 10:310

    Article  Google Scholar 

  • Pidasheva S, Canaff L, Simonds W, Marx S, Hendy G (2005) Impaired cotranslational processing of the calcium-sensing receptor due to signal peptide missense mutations in familial hypocalciuric hypercalcemia. Hum Mol Genet 14:1679–1690

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal S, Fang H, Patanavanich S, Sando J, Kamatchi G (2008a) Protein kinase C isozyme-specific potentiation of expressed Cav 2.3 currents by acetyl-β-methylcholine and phorbol-12-myristate, 13-acetate. Brain Res 1210:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajagopal S, Fang H, Patanavanich S, Varghese G, Sando JJ, Kamatchi GL (2008b) Protein kinase C Isozyme specific Potentiation of expressed CaV 2.3 currents by acetyl-β-methylcholine and Phorbol-12-myristate, 13-acetate. Brain Res 1210:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajagopal S, Fang H, IAO C, Jhaveri S, Taneja S, Dehlin EM, Snyder SL, Sando JJ, Kamatchi GL (2009) Site-specific regulation of cav2.2 channels by protein kinase c Isozymes β II and ε. Neuroscience 159:618–628

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal S, Fields BL, Kamatchi GL (2014) Contribution of protein Kinase ca Isozyme in the stimulation of insulin secretion by the inhibition of Cavβ subunits. Endocrine 47:463–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajagopal S, Sangam S, Singh S (2015a) Differential regulation of volatile anesthetics on ion channels. Int J Nutr Pharmacol Neurol Dis 5:128–134

    Google Scholar 

  • Rajagopal S, Sangam SR, Singh S (2015b) Differential regulation of anesthetics on ion channels. Int J Nutr Pharmacol Neurol Dis 5:128–134

    Google Scholar 

  • Riccardi D, Martin D (2008) The role of the calcium-sensing receptor in the Pathophysiology of secondary hyperparathyroidism. Clin Kidney J 1:i7–i11

    Article  CAS  Google Scholar 

  • Schorge S, Rajakulendran S (2012) The P/Q channel in human disease: untangling the genetics and physiology. Membr Transport signalling 1:311–320

    Article  CAS  Google Scholar 

  • Sepp R, Hategan L, Bácsi A, Cseklye J, Környei L, Borbás J, Széll M, Forster T, Nagy Y, Hegedűs Z (2017) Timothy syndrome 1 genotype without syndactyly and major extracardiac manifestations. Am J of Med Genet A 173:784–789

    Article  CAS  Google Scholar 

  • Shanbag P, Pathak A, Vaidya M, Shahid S (2002) Persistent hyperinsulinemic hypoglycemia of infancy--successful therapy with nifedipine. Indian J Pediatr 69:271–272

    Article  PubMed  Google Scholar 

  • Simms B, Zamponi G (2014) Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 82:24–45

    Article  CAS  PubMed  Google Scholar 

  • Strom T, Nyakatura G, Apfelstedt-Sylla E, Hellebrand H, Lorenz B, Weber B, Wutz K, Gutwillinger N, Rüther K, Drescher B, Sauer C, Zrenner E, Meitinger T, Rosenthal A, Meindl A (1998) An L-type calcium-channel gene mutated in incomplete X-linked congenital stationary night blindness. Nat Genet 19:260–263

    Article  CAS  PubMed  Google Scholar 

  • Thamcharoen N, Susantitaphong P, Wongrakpanich S, Chongsathidkiet P, Tantrachoti P, Pitukweerakul S, Avihingsanon Y, Praditpornsilpa K, Jaber B, Eiam-Ong S (2015) Effect of N- and T-type calcium channel blocker on proteinuria, blood pressure and kidney function in hypertensive patients: a meta-analysis. Hypertens Res 38:847–855

    Article  CAS  PubMed  Google Scholar 

  • Verrottia A, Strianob P, Belcastroc V, Matricardia S, Villad M, Parisid P (2011) Migralepsy and related conditions: advances in pathophysiology and classification. Seizure 20:271–275

    Article  Google Scholar 

  • Wan J, Mamsa H, Johnston J, Spriggs E, Singer H, Zee D, Al-Bayati A, Baloh R, Jen J, Investigators C (2011) Large genomic deletions in CACNA1A cause episodic ataxia type 2. Front Neurol 2:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Wappl E, Koschak A, Poteser M, Sinnegger M, Walter D, Eberhart A, Groschner K, Glossmann H, Kraus R, Grabner M, Striessni J (2002) Functional consequences of P/Q-type Ca2+ channel Cav2.1 Missense mutations associated with episodic ataxia type 2 and progressive ataxia. J Biol Chem 277:6960–6966

    Article  CAS  PubMed  Google Scholar 

  • Ward D, Riccardi D (2012) New concepts in calcium-sensing receptor pharmacology and signalling. Br J Pharmacol 165:35–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yafang H, Haishan J, Wang Q, Xie Z, Pan S (2013) Identification of a novel nonsense mutation p.Tyr1957Ter of CACNA1A in a Chinese family with episodic ataxia 2. PLoS One 8:e56362

    Article  Google Scholar 

  • Zamponi G, Striessnig J, Koschak A, Dolphin A (2015) The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev 67:821–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zühlke C, Spranger M, Spranger S, Voigt V, Lanz M, Gehlken U, Hinrichs F, Schwinger E (2003) SCA17 caused by homozygous repeat expansion in TBP due to partial isodisomy 6. Eur J Hum Genet 11:629–632

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Rajagopal, S., Ponnusamy, M. (2017). Voltage-Dependent Calcium Channels: From Physiology to Diseases. In: Calcium Signaling: From Physiology to Diseases. Springer, Singapore. https://doi.org/10.1007/978-981-10-5160-9_5

Download citation

Publish with us

Policies and ethics