Skip to main content

Molecular Basis of Colorectal Cancer: Tumor Biology

  • Chapter
  • First Online:
Surgical Treatment of Colorectal Cancer
  • 1454 Accesses

Abstract

Colorectal cancer is a heterogeneous disease entity in terms of both molecular carcinogenesis and morphologic multistep pathways. Three molecular carcinogenesis pathways have been identified: (1) chromosomal instability (CIN), (2) microsatellite instability (MSI), and (3) CpG island methylator phenotype (CIMP). The two morphologic multistep pathways are the classical pathway (the so-called adenoma–carcinoma sequence) and the serrated neoplasia pathway. CRC continues to be a significant public health problem, with a less than 10% of 5-year prognosis for metastatic CRC. Our increased understanding of the molecular events underlying CRC carcinogenesis will enable the development of new targeted therapies and the identification of clinical biomarkers that will inform their effective usage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sung JJ, Lau JY, Goh KL, et al. Increasing incidence of colorectal cancer in Asia: implications for screening. Lancet Oncol. 2005;6:871–6.

    Article  PubMed  Google Scholar 

  2. Jemal A, Bray F, Center MM, et al. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.

    Article  PubMed  Google Scholar 

  3. Bae JM, Kim JH, Kang GH. Molecular subtypes of colorectal cancer and their clinicopathologic features, with an emphasis on the serrated neoplasia pathway. Arch Pathol Lab Med. 2016;140:406–13.

    Article  CAS  PubMed  Google Scholar 

  4. Kanthan R, Senger JL, Kanthan SC. Molecular events in primary and metastatic colorectal carcinoma: a review. Pathol Res Int. 2012;2012:597497.

    Article  Google Scholar 

  5. Walsh MD, Buchanan DD, Pearson SA, et al. Immunohistochemical testing of conventional adenomas for loss of expression of mismatch repair proteins in Lynch syndrome mutation carriers: a case series from the Australasian site of the colon cancer family registry. Mod Pathol. 2012;25(5):722–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jass JR. Classification of colorectal cancer based on correlation of clinical, morphological and molecular features. Histopathology. 2007;50(1):113–30.

    Article  CAS  PubMed  Google Scholar 

  7. Goldstein NS. Small colonic microsatellite unstable adenocarcinomas and high-grade epithelial dysplasias in sessile serrated adenoma polypectomy specimens: a study of eight cases. Am J Clin Pathol. 2006;125(1):132–45.

    Article  PubMed  Google Scholar 

  8. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7.

    Article  Google Scholar 

  9. Mo Q, Wang S, Seshan VE, et al. Pattern discovery and cancer gene identification in integrated cancer genomic data. Proc Natl Acad Sci U S A. 2013;110(11):4245–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Noffsinger AE. Serrated polyps and colorectal cancer: new pathway to malignancy. Annu Rev Pathol. 2009;4:343–64.

    Article  CAS  PubMed  Google Scholar 

  11. Torlakovic EE, Gomez JD, Driman DK, Parfitt JR, Wang C, Benerjee T, Snover DC. Sessile serrated adenoma (SSA) vs. traditional serrated adenoma (TSA). Am J Surg Pathol. 2008;32:21–9.

    Article  PubMed  Google Scholar 

  12. East JE, Saunders BP, Jass JR. Sporadic and syndromic hyperplastic polyps and serrated adenomas of the colon: classification, molecular genetics, natural history, and clinical management. Gastroenterol Clin N Am. 2008;37:25–46.

    Article  Google Scholar 

  13. Leggett B, Whitehall V. Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology. 2010;138:2088–100.

    Article  CAS  PubMed  Google Scholar 

  14. Bardelli A, Cahill DP, Lederer G, et al. Carcinogen-specific induction of genetic instability. Proc Natl Acad Sci U S A. 2001;98(10):5770–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Taylor SS, McKeon F. Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell. 1997;89(5):727–35.

    Article  CAS  PubMed  Google Scholar 

  16. Castillo A, Morse HC III, Godfrey VL, Naeem R, Justice MJ. Overexpression of Eg5 causes genomic instability and tumor formation in mice. Cancer Res. 2007;67(21):10138–47.

    Article  CAS  PubMed  Google Scholar 

  17. Duesberg P, Fabarius A, Hehlmann R. Aneuploidy, the primary cause of the multilateral genomic instability of neoplastic and preneoplastic cells. IUBMB Life. 2004;56(2):65–81.

    Article  CAS  PubMed  Google Scholar 

  18. Ganem NJ, Godinho SA, Pellman D. A mechanism linking extra centrosomes to chromosomal instability. Nature. 2009;460(7252):278–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Takahashi T, Sano B, Nagata T, et al. Polo-like kinase 1 (PLK1) is overexpressed in primary colorectal cancers. Cancer Sci. 2003;94(2):148–52.

    Article  CAS  PubMed  Google Scholar 

  20. Dotan E, Meropol NJ, Zhu F, et al. Relationship of increased aurora kinase a gene copy number, prognosis and response to chemotherapy in patients with metastatic colorectal cancer. Br J Cancer. 2012;106(4):748–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Herz C, Schlürmann F, Batarello D, et al. Occurrence of Aurora A positive multipolar mitoses in distinct molecular classes of colorectal carcinomas and effect of Aurora A inhibition. Mol Carcinog. 2011;51(9):696–710.

    Article  PubMed  Google Scholar 

  22. Katayama H, Ota T, Jisaki F, et al. Mitotic kinase expression and colorectal cancer progression. J Natl Cancer Inst. 1999;91(13):1160–2.

    Article  CAS  PubMed  Google Scholar 

  23. Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature. 1997;386(6625):623–7.

    Article  CAS  PubMed  Google Scholar 

  24. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature. 1998;396(6712):643–9.

    Article  CAS  PubMed  Google Scholar 

  25. Thiagalingam S, Laken S, Willson JKV, et al. Mechanisms underlying losses of heterozygosity in human colorectal cancers. Proc Natl Acad Sci U S A. 2001;98(5):2698–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Khanna KK, Jackson SP. DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet. 2001;27(3):247–54.

    Article  CAS  PubMed  Google Scholar 

  27. Bassing CH, Suh H, Ferguson DO, et al. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell. 2003;114(3):359–70.

    Article  CAS  PubMed  Google Scholar 

  28. Celeste A, Difilippantonio S, Difilippantonio MJ, et al. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell. 2003;114(3):371–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zha S, Sekiguchi J, Brush JW, Bassing CH, Alt FW. Complementary functions of ATM and H2AX in development and suppression of genomic instability. Proc Natl Acad Sci U S A. 2008;105(27):9302–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Peddibhotla S, Lam MH, Gonzalez-Rimbau M, Rosen JM. The DNA-damage effector checkpoint kinase 1 is essential for chromosome segregation and cytokinesis. Proc Natl Acad Sci U S A. 2009;106(13):5159–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Van Cutsem E, Köhne C-H, Láng I, et al. Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol. 2011;29(15):2011–9.

    Article  PubMed  Google Scholar 

  32. Ogino S, Nosho K, Kirkner GJ, et al. CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer. Gut. 2009;58(1):90–6.

    Article  PubMed  Google Scholar 

  33. Ogino S, Shima K, Meyerhardt J, et al. Predictive and prognostic roles of BRAF mutation in stage III colon cancer: results from intergroup trial CALGB 89803. Clin Cancer Res. 2011;18(3):890–900.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li H-T, Lu Y-Y, An Y-X, Wang X, Zhao Q-C. KRAS, BRAF and PIK3CA mutations in human colorectal cancer: relationship with metastatic colorectal cancer. Oncol Rep. 2011;25(6):1691–7.

    CAS  PubMed  Google Scholar 

  35. Munro AJ, Lain S, Lane DP. P53 abnormalities and outcomes in colorectal cancer: a systematic review. Br J Cancer. 2005;92(3):434–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Russo A, Bazan V, Iacopetta B, Kerr D, Soussi T, Gebbia N. The TP53 colorectal cancer international collaborative study on the prognostic and predictive significance of p53 mutation: influence of tumor site, type of mutation, and adjuvant treatment. J Clin Oncol. 2005;23(30):7518–28.

    Article  CAS  PubMed  Google Scholar 

  37. Zhou W, Goodman SN, Galizia G, et al. Counting alleles to predict recurrence of early-stage colorectal cancers. Lancet. 2002;359(9302):219–25.

    Article  PubMed  Google Scholar 

  38. Diep CB, Thorstensen L, Meling GI, Skovlund E, Rognum TO, Lothe RA. Genetic tumor markers with prognostic impact in Dukes’ stages B and C colorectal cancer patients. J Clin Oncol. 2003;21(5):820–9.

    Article  PubMed  Google Scholar 

  39. Ogino S, Nosho K, Irahara N, et al. Prognostic significance and molecular associations of 18q loss of heterozygosity: a cohort study of microsatellite stable colorectal cancers. J Clin Oncol. 2009;27(27):4591–8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Karapetis CS, Khambata-Ford S, Jonker DJ, et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med. 2008;359(17):1757–65.

    Article  CAS  PubMed  Google Scholar 

  41. Tol J, Nagtegaal ID, Punt CJA. BRAF mutation in metastatic colorectal cancer. N Engl J Med. 2009;361(1):98–9.

    Article  CAS  PubMed  Google Scholar 

  42. Roper J, Richardson MP, Wang WV, et al. The dual PI3K/mTOR inhibitor NVP-BEZ235 induces tumor regression in a genetically engineered mouse model of PIK3CA wild-type colorectal cancer. PLoS One. 2011;6(9):e25132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jani JP, Arcari J, Bernardo V, et al. PF-03814735, an orally bioavailable small molecule aurora kinase inhibitor for cancer therapy. Mol Cancer Ther. 2010;9(4):883–94.

    Article  CAS  PubMed  Google Scholar 

  44. Schöffski P, Awada A, Dumez H, et al. A phase I, dose-escalation study of the novel Polo- like kinase inhibitor volasertib (BI 6727) in patients with advanced solid tumours. Eur J Cancer. 2012;48(2):179–86.

    Article  PubMed  Google Scholar 

  45. Infante JR, Kurzrock R, Spratlin J, et al. A phase I study to assess the safety, tolerability, and pharmacokinetics of AZD4877, an intravenous Eg5 inhibitor in patients with advanced solid tumors. Cancer Chemother Pharmacol. 2012;69(1):165–72.

    Article  CAS  PubMed  Google Scholar 

  46. Ehrlich M, editor. DNA alterations in cancer: genetic and epigenetic changes. Natick: Eaton; 2000. p. 178. ISBN 9781881299196. Retrieved 19 Feb 2015

    Google Scholar 

  47. Moreira L, Balaguer F, Lindor N, de la Chapelle A, Hampel H, Aaltonen LA, Hopper JL, Le Marchand L, Gallinger S, Newcomb PA, et al. Identification of Lynch syndrome among patients with colorectal cancer. JAMA. 2012;308:1555–65.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang X, Li J. Era of universal testing of microsatellite instability in colorectal cancer. World J Gastrointest Oncol. 2013;5:12–9.

    Article  PubMed  PubMed Central  Google Scholar 

  49. French AJ, Sargent DJ, Burgart LJ, Foster NR, Kabat BF, Goldberg R, Shepherd L, Windschitl HE, Thibodeau SN. Prognostic significance of defective mismatch repair and BRAF V600E in patients with colon cancer. Clin Cancer Res. 2008;14:3408–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bertagnolli MM, Redston M, Compton CC, et al. Microsatellite instability and loss of heterozygosity at chromosomal location 18q: prospective evaluation of biomarkers for stages II and III colon cancer--a study of CALGB 9581 and 89803. J Clin Oncol. 2011;29:3153–62.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kunkel TA, Erie DA. DNA mismatch repair. Annu Rev Biochem. 2005;74:681–710.

    Article  CAS  PubMed  Google Scholar 

  52. Lynch HT, Boland CR, Gong G, et al. Phenotypic and genotypic heterogeneity in the Lynch syndrome: diagnostic, surveillance and management implications. Eur J Hum Genet. 2006;14:390–402.

    Article  CAS  PubMed  Google Scholar 

  53. Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138:2073–2087.e3.

    Article  CAS  PubMed  Google Scholar 

  54. Ionov Y, Peinado MA, Malkhosyan S, et al. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993;363:558–61.

    Article  CAS  PubMed  Google Scholar 

  55. Rampino N, Yamamoto H, Ionov Y, et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science. 1997;275:967–9.

    Article  CAS  PubMed  Google Scholar 

  56. Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993;260:816–9.

    Article  CAS  PubMed  Google Scholar 

  57. Boland CR, Thibodeau SN, Hamilton SR, et al. A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res. 1998;58:5248–57.

    CAS  PubMed  Google Scholar 

  58. Lindor NM, Burgart LJ, Leontovich O, et al. Immunohistochemistry versus microsatellite instability testing in phenotyping colorectal tumors. J Clin Oncol. 2002;20:1043–8.

    Article  CAS  PubMed  Google Scholar 

  59. Quasar Collaborative Group, Gray R, Barnwell J, et al. Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet. 2007;370:2020–9.

    Article  Google Scholar 

  60. Bock C, Tomazou EM, Brinkman AB, et al. Quantitative comparison of genome-wide DNA methylation mapping technologies. Nat Biotechnol. 2010;28:1106–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Laird PW. Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet. 2010;11:191–203.

    Article  CAS  PubMed  Google Scholar 

  62. Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;89-92(180):301.

    Google Scholar 

  63. Berman BP, Weisenberger DJ, Aman JF, et al. Regions of focal DNA hypermethylation and long-range hypomethylation in colorectal cancer coincide with nuclear lamina-associated domains. Nat Genet. 2012;44:40–6.

    Article  CAS  Google Scholar 

  64. Schweiger MR, Hussong M, Rohr C, et al. Genomics and epigenomics of colorectal cancer. Wiley Interdiscip Rev Syst Biol Med. 2013;5:205–19.

    Article  CAS  PubMed  Google Scholar 

  65. Baylin SB, Ohm JE. Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer. 2006;6:107–16.

    Article  CAS  PubMed  Google Scholar 

  66. Maunakea AK, Nagarajan RP, Bilenky M, et al. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature. 2010;466:253–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hitchins MP, Rapkins RW, Kwok CT, et al. Dominantly inherited constitutional epigenetic silencing of MLH1 in a cancer-affected family is linked to a single nucleotide variant within the 5’UTR. Cancer Cell. 2011;20:200–13.

    Article  CAS  PubMed  Google Scholar 

  68. Shenker N, Flanagan JM. Intragenic DNA methylation: implications of this epigenetic mechanism for cancer research. Br J Cancer. 2012;106:248–53.

    Article  CAS  PubMed  Google Scholar 

  69. Eden A, Gaudet F, Waghmare A, et al. Chromosomal instability and tumors promoted by DNA hypomethylation. Science. 2003;300:455.

    Article  CAS  PubMed  Google Scholar 

  70. Rodriguez J, Frigola J, Vendrell E, et al. Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res. 2006;66:8462–9468.

    Article  CAS  PubMed  Google Scholar 

  71. Howard G, Eiges R, Gaudet F, et al. Activation and transposition of endogenous retroviral elements in hypomethylation induced tumors in mice. Oncogene. 2008;27:404–8.

    Article  CAS  PubMed  Google Scholar 

  72. Oster B, Thorsen K, Lamy P, et al. Identification and validation of highly frequent CpG island hypermethylation in colorectal adenomas and carcinomas. Int J Cancer. 2011;129:2855–66.

    Article  CAS  PubMed  Google Scholar 

  73. Kibriya MG, Raza M, Jasmine F, et al. A genome-wide DNA methylation study in colorectal carcinoma. BMC Med Genet. 2011;4:50.

    CAS  Google Scholar 

  74. Kim YH, Lee HC, Kim SY, et al. Epigenomic analysis of aberrantly methylated genes in colorectal cancer identifies genes commonly affected by epigenetic alterations. Ann Surg Oncol. 2011;18:2338–47.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Spisák S, Kalmar A, Galamb O, et al. Genome-wide screening of genes regulated by DNA methylation in colon cancer development. PLoS One. 2012;7:e46215.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Simmer F, Brinkman AB, Assenov Y, et al. Comparative genome-wide DNA methylation analysis of colorectal tumor and matched normal tissues. Epigenetics. 2012;7:1355–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Khamas A, Ishikawa T, Mogushi K, et al. Genome-wide screening for methylation-silenced genes in colorectal cancer. Int J Oncol. 2012;41:490–6.

    Article  CAS  PubMed  Google Scholar 

  78. Naumov VA, Generozov EV, Zaharjevskaya NB, et al. Genome-scale analysis of DNA methylation in colorectal cancer using Infinium HumanMethylation450 BeadChips. Epigenetics. 2013;8:921–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hammoud SS, Cairns BR, Jones DA. Epigenetic regulation of colon cancer and intestinal stem cells. Curr Opin Cell Biol. 2013;25:177–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Suvà ML, Riggi N, Bernstein BE. Epigenetic reprogramming in cancer. Science. 2013;339:1567–70.

    Article  PubMed  Google Scholar 

  81. Luo Y, Wong CJ, Kaz AM, et al. Differences in DNA methylation signatures reveal multiple pathways of progression from adenoma to colorectal cancer. Gastroenterology. 2014;147:418–29.

    Article  CAS  PubMed  Google Scholar 

  82. Hinoue T, Weisenberger DJ, Lange CP, et al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res. 2012;22:271–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Weisenberger DJ, Siegmund KD, Campan M, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38:787–93.

    Article  CAS  PubMed  Google Scholar 

  84. Ogino S, Odze RD, Kawasaki T, et al. Correlation of pathologic features with CpG island methylator phenotype (CIMP) by quantitative DNA methylation analysis in colorectal carcinoma. Am J Surg Pathol. 2006;30:1175–83.

    Article  PubMed  Google Scholar 

  85. Goel A, Nagasaka T, Arnold CN, Inoue T, Hamilton C, Niedzwiecki D, Compton C, Mayer RJ, Goldberg R, Bertagnolli MM, et al. The CpG island methylator phenotype and chromosomal instability are inversely correlated in sporadic colorectal cancer. Gastroenterology. 2007;132:127–38.

    Article  CAS  PubMed  Google Scholar 

  86. Suehiro Y, Wong CW, Chirieac LR, Kondo Y, Shen L, Webb CR, Chan YW, Chan AS, Chan TL, Wu TT, et al. Epigenetic-genetic interactions in the APC/WNT, RAS/RAF, and P53 pathways in colorectal carcinoma. Clin Cancer Res. 2008;14:2560–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Toyota M, Ahuja N, Ohe-Toyota M, et al. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A. 1999;96:8681–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shen L, Toyota M, Kondo Y, et al. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci U S A. 2007;104:18654–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Azuara D, Rodriguez-Moranta F, de Oca J, et al. Novel methylation panel for the early detection of colorectal tumors in stool DNA. Clin Colorectal Cancer. 2010;9:168–76.

    Article  CAS  PubMed  Google Scholar 

  90. Wang X, Kuang YY, Hu XT. Advances in epigenetic biomarker research in colorectal cancer. World J Gastroenterol. 2014;20:4276–87.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Schuebel KE, Chen W, Cope L, et al. Comparing the DNA hypermethylome with gene mutations in human colorectal cancer. PLoS Genet. 2007;3:1709–23.

    Article  CAS  PubMed  Google Scholar 

  92. Mori Y, Olaru AV, Cheng Y, et al. Novel candidate colorectal cancer biomarkers identified by methylation microarray-based scanning. Endocr Relat Cancer. 2011;18:465–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yi JM, Dhir M, Guzzetta AA, et al. DNA methylation biomarker candidates for early detection of colon cancer. Tumour Biol. 2012;33:363–72.

    Article  CAS  PubMed  Google Scholar 

  94. Guinney J, et al. The consensus molecular subtypes of colorectal cancer. Nat Med. 2015;21(11):1350–6. https://doi.org/10.1038/nm.3967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ren, Z., Tao, Z. (2018). Molecular Basis of Colorectal Cancer: Tumor Biology. In: Kim, N., Sugihara, K., Liang, JT. (eds) Surgical Treatment of Colorectal Cancer. Springer, Singapore. https://doi.org/10.1007/978-981-10-5143-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5143-2_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5142-5

  • Online ISBN: 978-981-10-5143-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics