Skip to main content

Catalytic Cascade Transformations of Biomass into Polyols

  • Chapter
  • First Online:
Production of Biofuels and Chemicals with Bifunctional Catalysts

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 8))

Abstract

Among the many oxygen-rich chemicals that can be obtained from biomass, polyols, such as ethylene glycol and propylene glycol, are widely used in industry. Liquid polyols have been used in polyurethane foam preparation and as components of adhesives. Hydrolysis, coupled with hydrogenation and hydrogenolysis allows transformation of biomass or its constituents into polyols. Liquefaction is another approach which is efficient for converting biomass into liquid polyols that have high content of reactive hydroxyl groups.

The cascade transformation of biomass to polyols is widely used. In some cases, fractionation of biomass into its main components (cellulose, hemicelluloses and lignin) is accomplished to facilitate its further conversion. Production of polyols from cellulose can be conducted in a two-step process with suitable catalysts or in an one-step process with bifunctional catalysts. Polyol production depends on the material used as feedstock, catalyst employed and reaction conditions.

This chapter reviews key strategies used to convert biomass into polyols. Special emphasis is given to emerging processes aimed to valorize biomass through a cascade approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gallezot P. Conversion of biomass to selected chemical products. Chem Soc Rev. 2012;41:1538–58.

    Article  CAS  PubMed  Google Scholar 

  2. Vira RB. Valorización de residuos agroindustriales mediante conversión química. Doctoral dissertation, University of the Basque Country, Spain; 2012.

    Google Scholar 

  3. Li H, Fang Z, Smith RL, Yang S. Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Prog Energy Combust Sci. 2016;55:98–194.

    Article  Google Scholar 

  4. Kumar AK, Sharma S. Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess. 2017;4(1):7. https://doi.org/10.1186/s40643-017-0137-9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brodin M, Vallejos M, Opedal MT, María Area C, Chinga-Carrasco G. Lignocellulosics as sustainable resources for production of bioplastics- a review. J Clean Prod. 2017. https://doi.org/10.1016/j.jclepro.2017.05.209.

  6. Dimitriadis A, Bezergianni S. Hydrothermal liquefaction of various biomass and waste feedstocks for biocrude production: a state of the art review. Renew Sust Eener Rev. 2017;68:113–25.

    Article  CAS  Google Scholar 

  7. McKendry P. Energy production from biomass (part 2): conversion technologies. Bioresour Technol. 2002;83(1):47–54.

    Article  CAS  PubMed  Google Scholar 

  8. Huang HJ, Yuan XZ. Recent progress in the direct liquefaction of typical biomass. Prog Energy Combust Sci. 2015;49:59–80.

    Article  Google Scholar 

  9. Savage PE. A perspective on catalysis in sub- and supercritical water. J Supercrit Fluids. 2009;47:407–14.

    Article  CAS  Google Scholar 

  10. Peterson AA, Vogel F, Lachance RP, Fröling M, Antal MJ Jr, Tester JW. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci. 2008;1:32–65.

    Article  CAS  Google Scholar 

  11. Huang HJ, Yuan XZ, Zeng GM, Liu Y, Li H, Yin J, Wang XL. Thermochemical liquefaction of rice husk for bio-oil production with sub- and supercritical ethanol as solvent. J Anal Appl Pyrolysis. 2013;102:60–7.

    Article  CAS  Google Scholar 

  12. Xu C, Lad N. Production of heavy oils with high caloric values by direct liquefaction of woody biomass in sub/near-critical water. Energy Fuel. 2008;22(1):635–42.

    Article  CAS  Google Scholar 

  13. Cheng S, D’Cruz I, Wang M, Leitch M, Xu C. Highly efficient liquefaction of Woody biomass in hot-compressed alcohol-water co-solvents. Energy Fuel. 2010;24:4659–67.

    Article  CAS  Google Scholar 

  14. Karagöz S, Bhaskar T, Muto A, Sakata Y. Hydrothermal upgrading of biomass: effect of K2CO3concentration and biomass/water ratio on products distribution. Bioresour Technol. 2006;97(1):90–8.

    Article  PubMed  CAS  Google Scholar 

  15. Sun P, Heng M, Sun S, Chen J. Direct liquefaction of paulownia in hot compressed water: influence of catalysts. Energy. 2010;35:5421–9.

    Article  CAS  Google Scholar 

  16. Chumpoo J, Prasassarakich P. Bio-oil from hydro-liquefaction of Bagasse in supercritical ethanol. Energy Fuel. 2010;24:2071–7.

    Article  CAS  Google Scholar 

  17. Zhang Q, Zhao G, Chen J. Effects of inorganic acid catalysts on liquefaction of wood in phenol. Front For China. 2006;2:214–8.

    Article  Google Scholar 

  18. Luterbacher JS, Alonso DM, Dumesic JA. Targeted chemical upgrading of lignocellulosic biomass to platform molecules. Green Chem. 2014;16:4816–38.

    Article  CAS  Google Scholar 

  19. Robinson JM, Burgess CE, Bently MA, Brasher CD, Horne BO, Lillard DM, Macias JM, Mandal HD, Mills SC, O’Hara KD, Pon JT, Raigoza AF, Sanchez EH, Villarreal JS. The use of catalytic hydrogenation to intercept carbohydrates in a dilute acid hydrolysis of biomass to effect a clean separation from lignin. Biomass Bioenergy. 2004;26(5):473–83.

    Article  CAS  Google Scholar 

  20. Li N, Tompsett GA, Zhang T, Shi J, Wyman CE, Huber GW. Renewable gasoline from aqueous phase hydrodeoxygenation of aqueous sugar solutions prepared by hydrolysis of maple wood. Green Chem. 2011;13:91–101.

    Article  CAS  Google Scholar 

  21. Patel CM, Barot AA, Sinha VK. Sequential liquefaction of Nicotiana tabacum stems biomass by crude polyhydric alcohols for the production of polyols and rigid polyurethane foams. J Appl Polym Sci. 2016;43(974):1–10.

    Google Scholar 

  22. Yu F, Liu Y, Pan X, Lin X, Liu C, Chen P, Ruan R. Liquefaction of corn stover and preparation of polyester from the liquefied polyol. Biochem Biotechnol. 2006;130(1):574–85.

    Article  Google Scholar 

  23. Wang T, Zhang L, Li D, Yin J, Wu S, Mao Z. Mechanical properties of polyurethane foams prepared from liquefied corn stover with PAPI. Bioresour Technol. 2008;99(7):2265–8.

    Article  CAS  PubMed  Google Scholar 

  24. Mun SP, Gilmour IA, Jordan PJ. Effect of organic sulfonic acids as catalysts during phenol liquefaction of Pinus Radiata Bark. J Ind Eng Chem. 2006;12(5):720–6.

    CAS  Google Scholar 

  25. Zhang J, Du M, Hu L. Bamboo liquefaction with polyhydric alcohols and its application in flexible polyurethane foam. Adv Mater Res. 2012;524–527:2113–7.

    Article  CAS  Google Scholar 

  26. Li X, Li X, Qi W, Zhang J, Shi J, Pang J. Research on liquefaction technology of poplar wood chips with multicomponent solvent. Taiyangneng Xuebao/Acta Energiae Solaris Sinica. 2015;36(4):971–5.

    Google Scholar 

  27. Heinze T, Petzold K. Cellulose chemistry: novel products and synthesis paths. In: Belgacem MN, Gandini A, editors. Monomers, polymers and composites from renewable resources. 1st ed. Amsterdam: Elsevier; 2008. p. 343–68.

    Chapter  Google Scholar 

  28. Robles E, Salaberria AM, Herrera R, Fernandes SC, Labidi J. Self-bonded composite films based on cellulose nanofibers and chitin nanocrystals as antifungal materials. Carbohydr Polym. 2016;144:41–9.

    Article  CAS  PubMed  Google Scholar 

  29. Fagundes PM, Padula AD, Padilha ACM. Interdependent international relations and the expansion of ethanol production and consumption: the Brazilian perspective. J Clean Prod. 2016;133:616–30.

    Article  Google Scholar 

  30. Liu X, Wang X, Yao S, Jiang Y, Guan J, Mu X. Recent advances in the production of polyols from lignocellulosic biomass and biomass-derived com-pounds. RSC Adv. 2014;4(90):49501–20.

    Article  CAS  Google Scholar 

  31. Wang X, Meng L, Wu F, Jiang Y, Wang L, Mu X. Efficient conversion of microcrystalline cellulose to 1,2-alkanediols over supported Ni catalysts. Green Chem. 2012;14(3):758–65.

    Article  CAS  Google Scholar 

  32. Yue H, Zhao Y, Ma X, Gong J. Ethylene glycol: properties, synthesis, and applications. Chem Soc Rev. 2012;41(11):4218–44.

    Article  CAS  PubMed  Google Scholar 

  33. Luo J, Fang Z, Smith RL. Ultrasound-enhanced conversion of biomass to biofuels. Prog Energy Combust Sci. 2014;41:56–93.

    Article  Google Scholar 

  34. Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B. Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid. Chem Commun. 2011;47(19):5590–2.

    Article  CAS  Google Scholar 

  35. Onda A, Ochi T, Yanagisawa K. Selective hydrolysis of cellulose into glucose over solid acid catalysts. Green Chem. 2008;10(10):1033–7.

    Article  CAS  Google Scholar 

  36. Saeman JF. Kinetics of wood saccharification hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Ind Eng Chem Res. 1945;37(1):43–52.

    Article  CAS  Google Scholar 

  37. Rodrıguez-Chong A, Ramırez JA, Garrote G, Vázquez M. Hydrolysis of sugar cane bagasse using nitric acid: a kinetic assessment. J Food Eng. 2004;61(2):143–52.

    Article  Google Scholar 

  38. Vilcocq L, Castilho PC, Carvalheiro F, Duarte LC. Hydrolysis of oligo-saccharides over solid acid catalysts: a review. ChemSusChem. 2014;7(4):1010–9.

    Article  CAS  PubMed  Google Scholar 

  39. Zheng M, Wang A, Pang J, Li N, Zhang T. Mechanism and kinetic analysis of the hydrogenolysis of cellulose to polyols. In: Schlaf M, editor. Reaction pathways and mechanisms in thermocatalytic biomass conversion I. Singapore: Springer; 2016. p. 227–60.

    Chapter  Google Scholar 

  40. Shuai L, Pan X. Hydrolysis of cellulose by cellulase-mimetic solid catalyst. Energy Environ Sci. 2012;5(5):6889–94.

    Article  CAS  Google Scholar 

  41. Suganuma S, Nakajima K, Kitano M, Yamaguchi D, Kato H, Hayashi S. Hydrolysis of cellulose by amorphous carbon bearing SO3H, COOH, and OH groups. J Am Chem Soc. 2008;130(38):12787–93.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang F, Deng X, Fang Z, Zeng HY, Tian XF, Kozinski JA. Hydrolysis of crystalline cellulose over Zn-Ca-Fe oxide catalyst. Petrochem Technol. 2011;40:43–8.

    Google Scholar 

  43. Gallezot P, Nicolaus N, Fleche G, Fuertes P, Perrard A. Glucose hydrogenation on ruthenium catalysts in a trickle-bed reactor. J Catal. 1998;180:51–5.

    Article  CAS  Google Scholar 

  44. Zhao G, Zheng M, Zhang J, Wang A, Zhang T. Catalytic conversion of concentrated glucose to ethylene glycol with semicontinuous reaction system. Ind Eng Chem Res. 2013;52(28):9566–72.

    Article  CAS  Google Scholar 

  45. Wisnlak J, Simon R. Hydrogenation of glucose, fructose, and their mix-tures. Ind Eng Chem Prod Res D. 1979;18(1):50–7.

    Article  Google Scholar 

  46. Li H, Li H, Deng JF. Glucose hydrogenation over Ni–B/SiO2 amorphous alloy catalyst and the promoting effect of metal dopants. Catal Today. 2002;74(1):53–63.

    Article  CAS  Google Scholar 

  47. Marques C, Tarek R, Sara M, Brar SK. Sorbitol production from bio-mass and its global market. In: Brar SK, Sarma SJ, Pakshirajan K, editors. Platform chemical biorefinery. Amsterdam: Elsevier; 2016. p. 217–27.

    Chapter  Google Scholar 

  48. Crezee E, Hoffer BW, Berger RJ, Makkee M, Kapteijn F, Moulijn JA. Three-phase hydrogenation of D-glucose over a carbon supported ruthenium catalyst mass transfer and kinetics. Appl Catal A Gen. 2003;251(1):1–17.

    Article  CAS  Google Scholar 

  49. Dechamp N, Gamez A, Perrard A, Gallezot P. Kinetics of glucose hydrogenation in a trickle-bed reactor. Catal Today. 1995;24:29–34.

    Article  CAS  Google Scholar 

  50. Jiang Y, Wang X, Cao Q, Dong L, Guan J, Mu X. Chemical conversion of biomass to green chemicals. In: Xian M, editor. Sustainable production of bulk chemicals integration of bio-, chemo- resources and processes. 1st ed. Dordrecht: Springer; 2016. p. 19–49.

    Chapter  Google Scholar 

  51. Rinaldi R, Schuth F. Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem. 2009;2(12):1096–107.

    Article  CAS  PubMed  Google Scholar 

  52. Climent MJ, Corma A, Iborra S. Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals. Chem Rev. 2010;111(2):1072–133.

    Article  PubMed  CAS  Google Scholar 

  53. Dixon DJ. Bifunctional catalysis. J Org Chem. 2016;12:1079–80.

    CAS  Google Scholar 

  54. Fukuoka A, Dhepe PL. Catalytic conversion of cellulose into sugar alcohols. Angew Chem Int Ed. 2006;45(31):5161–3.

    Article  CAS  Google Scholar 

  55. Luo C, Wang S, Liu H. Cellulose conversion into polyols catalyzed by reversibly formed acids and supported ruthenium clusters in hot water. Angew Chem Int. 2007;46(40):7636–9.

    Article  CAS  Google Scholar 

  56. Ruppert AM, Weinberg K, Palkovits R. Hydrogenolysis goes bio: from carbohydrates and sugar alcohols to platform chemicals. Angew Chem Int. 2012;51(11):2564–601.

    Article  CAS  Google Scholar 

  57. Palkovits R, Tajvidi K, Procelewska J, Rinaldi R, Ruppert A. Hydrogenolysis of cellulose combining mineral acids and hydrogenation catalysts. Green Chem. 2010;12(6):972–8.

    Article  CAS  Google Scholar 

  58. Liang G, Wu C, He L, Ming J, Cheng H, Zhuo L, Zhao F. Selective conversion of concentrated microcrystalline cellulose to isosorbide over Ru/C catalyst. Green Chem. 2011;13(4):839–42.

    Article  CAS  Google Scholar 

  59. Geboers J, Van de Vyver S, Carpentier K, de Blochouse K, Jacobs P, Sels B. Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon. Chem Commun. 2010;46(20):3577–9.

    Article  CAS  Google Scholar 

  60. Okuhara T. Water-tolerant solid acid catalysts. Chem Rev. 2002;102(10):3641–66.

    Article  CAS  PubMed  Google Scholar 

  61. Chamblee TS, Weikel RR, Nolen SA, Liotta CL, Eckert CA. Reversible in situ acid formation for β-pinene hydrolysis using CO2 expanded liquid and hot water. Green Chem. 2004;6(8):382–6.

    Article  CAS  Google Scholar 

  62. Tai Z, Zhang J, Wang A, Zheng M, Zhang T. Temperature-controlled phase-transfer catalysis for ethylene glycol production from cellulose. Chem Commun. 2012;48(56):7052–4.

    Article  CAS  Google Scholar 

  63. Van de Vyver S, Geboers J, Dusselier M, Schepers H, Vosch T, Zhang L, Van Tendeloo G, Jacobs PA, Sels BF. Selective bifunctional catalytic conversion of cellulose over reshaped Ni particles at the tip of carbon nanofibers. ChemSusChem. 2010;3(6):698–701.

    Article  PubMed  CAS  Google Scholar 

  64. Dhepe PL, Fukuoka A. Cellulose conversion under heterogeneous catalysis. ChemSusChem. 2008;1:969–75.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang T, Zhou Y, Liu D, Petrus L. Qualitative analysis of products formed during the acid catalyzed liquefaction of bagasse in ethylene glycol. Bioresour Technol. 2007;98(7):1454–9.

    Article  CAS  PubMed  Google Scholar 

  66. Liu Y, Luo C, Liu H. Tungsten trioxide promoted selective conversion of cellulose into propylene glycol and ethylene glycol on a ruthenium catalyst. Angew Chem. 2012;124(13):3303–7.

    Article  Google Scholar 

  67. Zheng MY, Wang AQ, Ji N, Pang JF, Wang XD, Zhang T. Transition metal–tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol. ChemSusChem. 2010;3(1):63–6.

    Article  CAS  PubMed  Google Scholar 

  68. Zheng M, Pang J, Wang A, Zhang T. One-pot catalytic conversion of cellulose to ethylene glycol and other chemicals: from fundamental discovery to potential commercialization. Chin J Catal. 2014;35(5):602–13.

    Article  CAS  Google Scholar 

  69. Ribeiro LS, Órfão JJ, Pereira MFR. Enhanced direct production of sorbitol by cellulose ball-milling. Green Chem. 2015;17(5):2973–80.

    Article  CAS  Google Scholar 

  70. AH L, Schmidt W, Matoussevitch N, Bönnemann H, Spliethoff B, Tesche B, Eckhard B, Kiefer W, Schüth F. Nanoengineering of a magnetically sepa-rable hydrogenation catalyst. Angew Chem. 2004;116(33):4403–6.

    Article  Google Scholar 

  71. Wang D, Astruc D. Magnetically recoverable ruthenium catalysts in organic synthesis. Molecules. 2014;19(4):4635–53.

    Article  PubMed  CAS  Google Scholar 

  72. Zhang C, Wang H, Liu F, Wang L, He H. Magnetic core–shell Fe3O4@ C-SO3H nanoparticle catalyst for hydrolysis of cellulose. Cellulose. 2013;20(1):127–34.

    Article  CAS  Google Scholar 

  73. Zhang J, SB W, Liu Y. Direct conversion of cellulose into sorbitol over a magnetic catalyst in an extremely low concentration acid system. Energy Fuel. 2014;28(7):4242–6.

    Article  CAS  Google Scholar 

  74. Manaenkov OV, Mann JJ, Kislitza OV, Losovyj Y, Stein BD, Morgan DG, Pink M, Lependina OL, Shifrina ZB, Matveeva VG, Sulman EM, Bronstein LM. Ru-containing magnetically recoverable catalysts: a sustainable path-way from cellulose to Ethylene and Propylene Glycols. ACS Appl Mater Interfaces. 2016;8(33):21285–93.

    Article  CAS  PubMed  Google Scholar 

  75. Zhang Y, Wang A, Zhang T. A new 3D mesoporous carbon replicated from commercial silica as a catalyst support for direct conversion of cellulose into ethylene glycol. Chem Commun. 2010;46(6):862–4.

    Article  CAS  Google Scholar 

  76. Kobayashi H, Ito Y, Komanoya T, Hosaka Y, Dhepe PL, Kasai K, Hara K, Fukuoka A. Synthesis of sugar alcohols by hydrolytic hydrogenation of cellulose over supported metal catalysts. Green Chem. 2011;13(2):326–33.

    Article  CAS  Google Scholar 

  77. Cao Y, Wang J, Kang M, Zhu Y. Efficient synthesis of ethylene glycol from cellulose over Ni–WO3/SBA-15 catalysts. J Molec Catal A Chem. 2014;381:46–53.

    Article  CAS  Google Scholar 

  78. Li H, Yang S, Riisager A, Pandey A, Sangwan RS, Saravanamurugan S, Luque R. Zeolite and zeotype-catalysed transformations of biofuranic compounds. Green Chem. 2016;18(21):5701–35.

    Article  CAS  Google Scholar 

  79. Li Z, Qin M, Xu C, Chen X. Hot water extraction of hemicelluloses from aspen wood chips of different sizes. Bioresources. 2013;8(4):5690–700.

    Google Scholar 

  80. Fišerová M, Opálená E. Hemicelluloses extraction from beech wood with water and alkaline solutions. Wood Res. 2012;57(4):505–14.

    Google Scholar 

  81. Jacquemin L, Zeitoun R, Sablayrolles C, Pontalier PY, Rigal L. Evaluation of the technical and environmental performances of extraction and purification processes of arabinoxylans from wheat straw and bran. Process Biochem. 2012;47(3):373–80.

    Article  CAS  Google Scholar 

  82. Zhou S, Liu X, Guo Y, Wang Q, Peng D, Cao L. Comparison of the immunological activities of arabinoxylans from wheat bran with alkali and xylanase-aided extraction. Carbohydr Polym. 2010;81(4):784–9.

    Article  CAS  Google Scholar 

  83. Faba L, Kusema BT, Murzina EV, Tokarev A, Kumar N, Smeds A, Díaz E, Ordóñez S, Mäki-Arvela P, Willför S, Salmi T, Murzin DY. Hemicellulose hydrolysis and hydrolytic hydrogenation over proton-and metal modified beta zeolites. Micropor Mesopor Mat. 2014;189:189–99.

    Article  CAS  Google Scholar 

  84. Mäki-Arvela P, Salmi T, Holmbom B, Willför S, Murzin DY. Synthesis of sugars by hydrolysis of hemicelluloses-a review. Chem Rev. 2011;111(9):5638–66.

    Article  PubMed  CAS  Google Scholar 

  85. González G, López-Santín J, Caminal G, Sola C. Dilute acid hydrolysis of wheat straw hemicellulose at moderate temperature: a simplified kinetic model. Biotechnol Bioeng. 1986;28(2):288–93.

    Article  PubMed  Google Scholar 

  86. Kambourova M, Mandeva R, Fiume I, Maurelli L, Rossi M, Morana A. Hydrolysis of xylan at high temperature by co-action of the xylanase from Anoxybacillus flavithermus BC and the β-xylosidase/α-arabinosidase from Sulfolobus solfataricus Oα. J Appl Microbiol. 2007;102(6):1586–93.

    Article  CAS  PubMed  Google Scholar 

  87. Dhepe PL, Sahu R. A solid-acid-based process for the conversion of hemicellulose. Green Chem. 2010;12(12):2153–6.

    Article  CAS  Google Scholar 

  88. Herrera VAS, Saleem F, Kusema B, Eränen K, Salmi T. Hydrogenation of L-arabinose and D-galactose mixtures over a heterogeneous Ru/C catalyst. Top Catal. 2012;55(7–10):550–5.

    Article  CAS  Google Scholar 

  89. Schiweck H, Bär A, Vogel R, Schwarz E, Kunz M, Dusautois C, Clement A, Lefranc C, Lüssem B, Moser M, Peters S. Sugar alcohols. In: Elvers B, editor. Ullmann’s encyclopedia of industrial chemistry. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2012. p. 1–37.

    Google Scholar 

  90. Kobayashi H, Matsuhashi H, Komanoya T, Hara K, Fukuoka A. Transfer hydrogenation of cellulose to sugar alcohols over supported ruthenium catalysts. Chem Commun. 2011;47(8):2366–8.

    Article  CAS  Google Scholar 

  91. Mikkola JP, Salmi T. Three-phase catalytic hydrogenation of xylose to xylitol-prolonging the catalyst activity by means of on-line ultrasonic treatment. Catal Today. 2001;64(3):271–7.

    Article  CAS  Google Scholar 

  92. Mishra DK, Dabbawala AA, Hwang JS. Ruthenium nanoparticles supported on zeolite Y as an efficient catalyst for selective hydrogenation of xylose to xylitol. J Mol Catal A Chem. 2013;376:63–70.

    Article  CAS  Google Scholar 

  93. Hernandez-Mejia C, Gnanakumar ES, Olivos-Suarez A, Gascon J, Greer HF, Zhou W, Rothenberg G, Shiju NR. Ru/TiO2-catalysed hydrogenation of xylose: the role of the crystal structure of the support. Catal Sci Technol. 2016;6(2):577–82.

    Article  CAS  Google Scholar 

  94. Wisniak J, Hershkowitz M, Stein S. Hydrogenation of xylose over platinum group catalysts. Ind Eng Chem Prod Res D. 1974;13(4):232–6.

    Article  CAS  Google Scholar 

  95. Yadav M, Mishra DK, Hwang JS. Catalytic hydrogenation of xylose to xylitol using ruthenium catalyst on NiO modified TiO2 support. Appl Catal A Gen. 2012;425:110–6.

    Article  CAS  Google Scholar 

  96. Yi G, Zhang Y. One-pot selective conversion of Hemicellulose (Xylan) to Xylitol under mild conditions. ChemSusChem. 2012;5(8):1383–7.

    Article  CAS  PubMed  Google Scholar 

  97. Käldström M, Kumar N, Tenho M, Mokeev MV, Moskalenko YE, Murzin DY. Catalytic transformations of birch kraft pulp. ACS Catal. 2012;2(7):1381–93.

    Article  CAS  Google Scholar 

  98. Murzin DY, Murzina EV, Tokarev A, Shcherban ND, Wärnå J, Salmi T. Arabinogalactan hydrolysis and hydrolytic hydrogenation using functionalized carbon materials. Catal Today. 2015;257:169–76.

    Article  CAS  Google Scholar 

  99. Kusema BT, Faba L, Kumar N, Mäki-Arvela P, Díaz E, Ordóñez S, Salmi T, Murzin DY. Hydrolytic hydrogenation of hemicellulose over metal modified mesoporous catalyst. Catal Today. 2012;196(1):26–33.

    Article  CAS  Google Scholar 

  100. Ennaert T, Feys S, Hendrikx D, Jacobs PA, Sels BF. Reductive splitting of hemicellulose with stable ruthenium-loaded USY zeolites. Green Chem. 2016;18(19):5295–304.

    Article  CAS  Google Scholar 

  101. Dietrich K, Mejia CH, Verschuren P, Rothenberg G, Shiju NR. One-pot selective conversion of Hemicellulose to Xylitol. Org Process Res Dev. 2017;21(2):165–70.

    Article  CAS  Google Scholar 

  102. Guha SK, Kobayashi H, Hara K, Kikuchi H, Aritsuka T, Fukuoka A. Hydrogenolysis of sugar beet fiber by supported metal catalyst. Catal Commun. 2011;12(11):980–3.

    Article  CAS  Google Scholar 

  103. Kobayashi H, Yamakoshi Y, Hosaka Y, Yabushita M, Fukuoka A. Production of sugar alcohols from real biomass by supported platinum catalyst. Catal Today. 2014;226:204–9.

    Article  CAS  Google Scholar 

  104. Abdelaziz OY, Brink DP, Prothmann J, Ravi K, Sun M, García-Hidalgo J, Sandahl M, Hulteberg CP, Turner C, Lidén G, Gorwa-Grauslund MF. Biological valorization of low molecular weight lignin. Biotechnol Adv. 2016;34(8):1318–46.

    Article  CAS  PubMed  Google Scholar 

  105. Andelin J, Niblock RW, Curlin JW. The pulp and paper making process, in Technologies for reducing dioxin in the manufacture of bleached wood pulp. In: Background paper (OTA-BP-O-54), US Congress, Office of technology assessment, Washington DC, USA; 1989. p. 74.

    Google Scholar 

  106. Mousavioun P, Doherty WO. Chemical and thermal properties of fractionated bagasse soda lignin. Ind Crop Prod. 2010;31(1):52–8.

    Article  CAS  Google Scholar 

  107. Koljonen K, Österberg M, Kleen M, Fuhrmann A, Stenius P. Precipitation of lignin and extractives on kraft pulp: effect on surface chemistry, surface morphology and paper strength. Cellulose. 2004;11(2):209–24.

    Article  CAS  Google Scholar 

  108. Erdocia X, Prado R, Corcuera MA, Labidi J. Effect of different organosolv treatments on the structure and properties of olive tree pruning lignin. J Ind Eng Chem. 2014;20(3):1103–8.

    Article  CAS  Google Scholar 

  109. Fatehi P, Chen J. Extraction of technical Lignins from pulping spent liquors, challenges and opportunities. In: Fang Z, editor. Production of biofuels and chemicals from Lignin. Singapore: Springer; 2016. p. 35–54.

    Chapter  Google Scholar 

  110. Pandey MP, Kim CS. Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol. 2011;34(1):29–41.

    Article  CAS  Google Scholar 

  111. Mahmood N, Yuan Z, Schmidt J, CC X. Depolymerization of lignins and their applications for the preparation of polyols and rigid polyurethane foams: a review. Renew Sust Energ Rev. 2016;60:317–29.

    Article  CAS  Google Scholar 

  112. Cateto CA, Barreiro MF, Rodrigues AE, Brochier-Salon MC, Thielemans W, Belgacem MN. Lignins as macromonomers for polyurethane synthesis: a comparative study on hydroxyl group determination. J Appl Polym Sci. 2008b;109(5):3008–17.

    Article  CAS  Google Scholar 

  113. Yang L, Wang X, Cui Y, Tian Y, Chen H, Wang Z. Modification of renewable resources-lignin-by three chemical methods and its applications to polyurethane foams. Polym Adv Technol. 2014;25(10):1089–98.

    Article  CAS  Google Scholar 

  114. Maldas D, Shiraishi N. Liquefaction of biomass in the presence of phenol and H2O using alkalies and salts as the catalyst. Biomass Bioenergy. 1997;12(4):273–9.

    Article  CAS  Google Scholar 

  115. Jin Y, Ruan X, Cheng X, Lü Q. Liquefaction of lignin by polyethyleneglycol and glycerol. Bioresour Technol. 2011;102(3):3581–3.

    Article  CAS  PubMed  Google Scholar 

  116. Sequeiros A, Serrano L, Briones R, Labidi J. Lignin liquefaction under microwave heating. J Appl Polym Sci. 2013;130(5):3292–8.

    Article  CAS  Google Scholar 

  117. Xue BL, Wen JL, Xu F, Sun RC. Polyols production by chemical modification of autocatalyzed ethanol-water lignin from Betula alnoides. J Appl Polym Sci. 2013;129(1):434–42.

    Article  CAS  Google Scholar 

  118. Faris AH, Ibrahim MNM, Rahim AA, Hussin MH, Brosse N. Preparation and characterization of Lignin polyols from the residues of oil palm empty fruit Bunch. Bioresources. 2015;10(4):7339–52.

    Article  CAS  Google Scholar 

  119. Bernardini J, Anguillesi I, Coltelli MB, Cinelli P, Lazzeri A. Optimizing the lignin based synthesis of flexible polyurethane foams employing reactive liquefying agents. Polym Int. 2015;64(9):1235–44.

    Article  CAS  Google Scholar 

  120. Xue BL, Wen JL, Sun RC. Producing lignin-based polyols through microwave-assisted liquefaction for rigid polyurethane foam production. Mater. 2015;8(2):586–99.

    Article  Google Scholar 

  121. Mahmood N, Yuan Z, Schmidt J, Xu C. Valorization of hydrolysis lignin for polyols and rigid polyurethane foam. J Sci Technol Forest Prod Process. 2013a;3(5):26–31.

    Google Scholar 

  122. Cinelli P, Anguillesi I, Lazzeri A. Green synthesis of flexible polyurethane foams from liquefied lignin. Eur Polym J. 2013;49(6):1174–84.

    Article  CAS  Google Scholar 

  123. Muller LC, Marx S, Vosloo H. Polyol preparation by liquefaction of technical Lignins in crude glycerol. J Renew Mater. 2017;14:67–80.

    Article  Google Scholar 

  124. Xue BL, Huang PL, Sun YC, Li XP, Sun RC. Hydrolytic depolymerization of corncob lignin in the view of a bio-based rigid polyurethane foam synthesis. RSC Adv. 2017;7(10):6123–30.

    Article  CAS  Google Scholar 

  125. Fang Z, Sato T, Smith RL, Inomata H, Arai K, Kozinski JA. Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water. Bioresour Technol. 2008;99(9):3424–30.

    Article  CAS  PubMed  Google Scholar 

  126. Matsushita Y, Yasuda S. Preparation and evaluation of lignosulfonates as a dispersant for gypsum paste from acid hydrolysis lignin. Bioresour Technol. 2005;96(4):465–70.

    Article  CAS  PubMed  Google Scholar 

  127. Wongsiriwan U, Noda Y, Song C, Prasassarakich P, Yeboah Y. Lignocellulosic biomass conversion by sequential combination of organic acid and base treatments. Energy Fuel. 2010;24(5):3232–8.

    Article  CAS  Google Scholar 

  128. Li Y, Liao Y, Cao X, Wang T, Ma L, Long J, Liu Q, Xua Y. Advances in hexitol and ethylene glycol production by one-pot hydrolytic hydrogenation and hydrogenolysis of cellulose. Biomass Bioenergy. 2015;74:148–61.

    Article  CAS  Google Scholar 

  129. Yuan Z, Cheng S, Leitch M, CC X. Hydrolytic degradation of alkaline lignin in hot-compressed water and ethanol. Bioresour Technol. 2010;101(23):9308–13.

    Article  CAS  PubMed  Google Scholar 

  130. Mahmood N, Yuan Z, Schmidt J, CC X. Production of polyols via direct hydrolysis of kraft lignin: effect of process parameters. Bioresour Technol. 2013b;139:13–20.

    Article  CAS  PubMed  Google Scholar 

  131. Kühnel I, Podschun J, Saake B, Lehnen R. Synthesis of lignin polyols via oxyalkylation with propylene carbonate. Holzforschung. 2015;69(5):531–8.

    Article  CAS  Google Scholar 

  132. Cateto CA, Barreiro MF, Rodrigues AE, Belgacem MN. Optimization study of lignin oxypropylation in view of the preparation of polyurethane rigid foams. Ind Eng Chem Res. 2009;48(5):2583–9.

    Article  CAS  Google Scholar 

  133. Cateto CAB. Lignin-based polyurethanes: characterisation, synthesis and applications. Doctoral dissertation, University of Porto, Portugal. 2008.

    Google Scholar 

  134. Nadji H, Bruzzese C, Belgacem MN, Benaboura A, Gandini A. Oxypropylation of lignins and preparation of rigid polyurethane foams from the ensuing polyols. Macromol Mater Eng. 2005;290(10):1009–16.

    Article  CAS  Google Scholar 

  135. Ahvazi B, Wojciechowicz O, Ton-That TM, Hawari J. Preparation of lignopolyols from wheat straw soda lignin. J Agric Food Chem. 2011;59(19):10505–16.

    Article  CAS  PubMed  Google Scholar 

  136. Zhang Q, Zhang G, Xu J, Gao C, Wu Y. Recent advances on ligin-derived polyurethane polymers. Rev Adv Mater Sci. 2015;40(2):146–54.

    CAS  Google Scholar 

  137. Sakdaronnarong C, Srimarut N, Laosiripojana N. Polyurethane synthesis from Sugarcane Bagasse Organosolv and Kraft Lignin. Key Eng Mater. 2015;659:527–32.

    Article  Google Scholar 

  138. Ignatyev IA, Van Doorslaer C, Mertens PG, Binnemans K, De Vos DE. Reductive splitting of cellulose in the ionic liquid 1-Butyl-3-Methylimidazolium Chloride. ChemSusChem. 2010;3(1):91–6.

    Article  CAS  PubMed  Google Scholar 

  139. Zhu Y, Kong ZN, Stubbs LP, Lin H, Shen S, Anslyn EV, Maguire JA. Conversion of cellulose to Hexitols catalyzed by ionic liquid-stabilized Ruthenium nanoparticles and a reversible binding agent. ChemSusChem. 2010;3(1):67–70.

    Article  CAS  PubMed  Google Scholar 

  140. Xie X, Han J, Wang H, Zhu X, Liu X, Niu Y, Song Z, Ge Q. Selective conversion of microcrystalline cellulose into hexitols over a Ru/[Bmim]3PW12O40 catalyst under mild conditions. Catal Today. 2014;233:70–6.

    Article  CAS  Google Scholar 

  141. Yan N, Zhao C, Luo C, Dyson PJ, Liu H, Kou Y. One-step conversion of cellobiose to C6-alcohols using a ruthenium nanocluster catalyst. J Am Chem Soc. 2006;128(27):8714–5.

    Article  CAS  PubMed  Google Scholar 

  142. Merino-Pérez O, Martínez-Palou R, Labidi J, Luque R. Microwave-assisted pretreatment of lignocellulosic biomass to produce biofuels and value-added products. In: Fang Z, Smith RL, Qi X, editors. Production of biofuels and chemicals with microwave. Berlin: Springer; 2015. p. 197–224.

    Chapter  Google Scholar 

  143. Gu X, Kanghua C, Ming H, Shi Y, Li Z. La-modified SBA-15/H2O2 systems for the microwave assisted oxidation of organosolv beech wood lignin. Maderas Cienc Tecnol. 2012;14(1):31–41.

    Article  CAS  Google Scholar 

  144. Shen D, Liu N, Dong C, Xiao R, Gu S. Catalytic solvolysis of lignin with the modified HUSYs in formic acid assisted by microwave heating. Chem Eng J. 2015;270:641–7.

    Article  CAS  Google Scholar 

  145. Toledano A, Serrano L, Pineda A, Romero AA, Luque R, Labidi J. Microwave-assisted depolymerisation of organosolv lignin via mild hydrogen-free hydrogenolysis: catalyst screening. Appl Catal B Environ. 2014;145:43–55.

    Article  CAS  Google Scholar 

  146. Mateus MM, Acero NF, Bordado JC, dos Santos RG. Sonication as a foremost tool to improve cork liquefaction. Ind Crop Prod. 2015;74:9–13.

    Article  CAS  Google Scholar 

  147. Behling R, Chatel G, Valange S. Sonochemical oxidation of vanillyl alcohol to vanillin in the presence of a cobalt oxide catalyst under mild conditions. Ultrason Sonochem. 2017;36:27–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the University of the Basque Country and the University of Pau and Pays de l’Adour (Predoctoral fellowship), the University of the Basque Country (Postdoctoral fellowship no. ESPDOC15/044) and the Spanish Ministry of Economy and Competitiveness (project CTQ2016-78689-R) for financially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalel Labidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fernández-Rodríguez, J., Erdocia, X., de Hoyos, P.L., Sequeiros, A., Labidi, J. (2017). Catalytic Cascade Transformations of Biomass into Polyols. In: Fang, Z., Smith Jr., R., Li, H. (eds) Production of Biofuels and Chemicals with Bifunctional Catalysts. Biofuels and Biorefineries, vol 8. Springer, Singapore. https://doi.org/10.1007/978-981-10-5137-1_6

Download citation

Publish with us

Policies and ethics