Skip to main content

Production of Biodiesel via Simultaneous Esterification and Transesterification

  • Chapter
  • First Online:
Production of Biofuels and Chemicals with Bifunctional Catalysts

Part of the book series: Biofuels and Biorefineries ((BIOBIO,volume 8))

Abstract

Biodiesel is considered as a substitute for fossil-based diesel fuels because of its renewability and environmental friendliness. Biodiesel is generally produced by transesterification of oils or esterification of free fatty acids with methanol. In these production procedures, basic and acidic catalysts enhance biodiesel yields under mild conditions. Particularly, heterogeneous acids promote simultaneous (trans)esterification in a single pot for biodiesel production (free of soap formation) from cheap raw materials containing high contents of free fatty acids, which cannot only avoid complex separation processes involved in pre-esterification, but also simplify catalyst separation and reuse, thus greatly reducing the cost. This chapter reviews the synthesis of biodiesel via simultaneous (trans)esterification catalyzed by mixed metal oxides, acidic ionic liquids, carbon-based solid acids, magnetic solid acids and hybrid solid acids. Advantages of heterogeneous catalytic reaction systems are discussed. Guidance is given on improving the performance of heterogeneous acid catalysts for production of biodiesel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sani YM, Daud WMAW, Aziz AA. Activity of solid acid catalysts for biodiesel production: a critical review. Appl Catal A-Gen. 2014;470:140–61.

    Article  CAS  Google Scholar 

  2. Guo WL, Li HL, Ji GL, Zhang GY. Ultrasound-assisted production of biodiesel from soybean oil using Brønsted acidic ionic liquid as catalyst. Bioresour Technol. 2012;125:332–4.

    Article  CAS  PubMed  Google Scholar 

  3. Meher LC, Vidya Sagar D, Naik SN. Technical aspects of biodiesel production by transesterification-a review. Renew Sust Energ Rev. 2006;10:248–68.

    Article  CAS  Google Scholar 

  4. Alcantara R, Canoira J, Amores LT, Fidalgo E, Franco MJ, Navarro A. Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow. Biomass Bioenergy. 2000;18:515–27.

    Article  CAS  Google Scholar 

  5. Sarin R, Sharma M, Sinharay S, Malhotra RK. Jatropha-palm biodiesel blends: an optimum mix for Asia. Fuel. 2007;86:1365–71.

    Article  CAS  Google Scholar 

  6. Zhang H, Zhou Q, Chang F, Pan H, Liu XF, Li H, DY H, Yang S. Production and fuel properties of biodiesel from Firmiana platanifolia L.f. as a potential non-food oil source. Ind Crop Prod. 2015;76:768–71.

    Article  CAS  Google Scholar 

  7. Hajjari M, Tabatabaei M, Aghbashlo M, Ghanavati H. A review on the prospects of sustainable biodiesel production: a global scenario with an emphasis on waste-oil biodiesel utilization. Renew Sust Energ Rev. 2017;72:445–64.

    Article  CAS  Google Scholar 

  8. Sajjadi B, Abdul Raman AA, Arandiyan H. A comprehensive review on properties of edible and non-edible vegetable oil-based biodiesel: composition, specifications and prediction models. Renew Sust Energ Rev. 2016;63:62–92.

    Article  CAS  Google Scholar 

  9. Lee AF, Bennett JA, Manayil JC, Wilson K. Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chem Soc Rev. 2014;43:7887–916.

    Article  CAS  PubMed  Google Scholar 

  10. Yin P, Chen L, Wang ZD, RJ Q, Liu XG, Ren SH. Production of biodiesel by esterification of oleic acid with ethanol over organophosphonic acid-functionalized silica. Bioresour Technol. 2012;110:258–63.

    Article  CAS  PubMed  Google Scholar 

  11. He LQ, Qin SJ, Chang T, Sun YZ, Gao XR. Biodiesel synthesis from the esterification of free fatty acids and alcohol catalyzed by long-chain Brønsted acid ionic liquid. Cat Sci Technol. 2013;3:1102–7.

    Article  CAS  Google Scholar 

  12. Berchmans HJ, Hirata S. Biodiesel production from crude Jatropha curcas L. Seed oil with a high content of free fatty acids. Bioresour Technol. 2008;99:1716–21.

    Article  CAS  PubMed  Google Scholar 

  13. HF L, Liu YY, Zhou H, Yang Y, Chen MY, Liang B. Production of biodiesel from Jatropha curcas L. oil. Comput Chem Eng. 2009;33:1091–6.

    Article  CAS  Google Scholar 

  14. de Oliveira JS, Leite PM, de Souza LB, Mello VM, Silva EC, Rubim JC, Meneghetti SM, Suarez PA. Characteristics and composition of Jatropha gossypiifolia and Jatropha curcas L. oils and application for biodiesel production. Biomass Bioenergy. 2009;33:449–53.

    Article  CAS  Google Scholar 

  15. West AH, Posarac D, Ellis N. Assessment of four biodiesel production processes using HYSYS. Plant Bioresour Technol. 2008;99:6587–601.

    Article  CAS  PubMed  Google Scholar 

  16. Marchetti JM, Miguel VU, Errazu AF. Techno-economic study of different alternatives for biodiesel production. Fuel Process Technol. 2008;89:740–8.

    Article  CAS  Google Scholar 

  17. Kolvari E, Koukabi N, Hosseini MM, Vahidian M, Ghobadi E. Nano-ZrO2 sulfuric acid: a heterogeneous solid acid nano catalyst for Biginelli reaction under solvent free conditions. RSC Adv. 2016;6:7419–25.

    Article  CAS  Google Scholar 

  18. Zhang Y, Wong WT, Yung KF. One-step production of biodiesel from rice bran oil catalyzed by chlorosulfonic acid modified zirconia via simultaneous esterification and transesterification. Bioresour Technol. 2013;147:59–64.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Y, Dube MA, McLean DD, Kates M. Biodiesel production from waste cooking oil:1. Process design and technological assessment. Bioresour Technol. 2003;89:1–16.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang Y, DubeÌ MA, McLean DD, Kates M. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol. 2003;90:229–40.

    Article  CAS  PubMed  Google Scholar 

  21. Zabeti M, Daud WAW, Aroua MK. Activity of solid catalysts for biodiesel production: a review. Fuel Process Technol. 2009;90:770–7.

    Article  CAS  Google Scholar 

  22. Konwar LJ, Boro J, Deka D. Review on latest developments in biodiesel production using carbon-based catalysts. Renew Sust Energ Rev. 2014;29:546–64.

    Article  CAS  Google Scholar 

  23. Wang Y, Ou S, Liu P, Xue F, Tang S. Comparison of two different processes to synthesize biodiesel by waste cooking oil. J Mol Catal A-Chem. 2006;252:107–12.

    Article  CAS  Google Scholar 

  24. Miao X, Li R, Yao H. Effective acid-catalyzed transesterification for biodiesel production. Energ Convers and Manage. 2009;50:2680–4.

    Article  CAS  Google Scholar 

  25. Guo F, Fang Z, Tian XF, Long YD, Jiang LQ. One-step production of biodiesel from Jatropha oil with high-acid value in ionic liquids. Bioresour Technol. 2013;140:447–50.

    Article  PubMed  Google Scholar 

  26. Long Y, Fang Z, Su T, Yang Q. Co-production of biodiesel and hydrogen from rapeseed and Jatropha oils with sodium silicate and Ni catalysts. Appl Energy. 2014;113:1819–25.

    Article  CAS  Google Scholar 

  27. Jyoti L, Boro J, Deka D. Review on latest developments in biodiesel production using carbon-based catalysts. Renew Sust Energ Rev. 2014;29:546–64.

    Article  CAS  Google Scholar 

  28. Yan S, Salley SO, Ng KYS. Simultaneous transesterification and esterification of unrefined or waste oils over ZnO-La2O3 catalysts. Appl Catal A Gen. 2009;353:203–12.

    Article  CAS  Google Scholar 

  29. Jitputti J, Kitiyanan B, Rangsunvigit P, Bunyakiat K, Attanatho L, Jenvanitpanjakul P. Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chem Eng J. 2006;116:61–6.

    Article  CAS  Google Scholar 

  30. Omota F, Dimian AC, Bliek A. Fatty acid esterification by reactive distillation: part 2-kinetics-based design for sulphated zirconia catalysts. Chem Eng Sci. 2003;58:3175–85.

    Article  CAS  Google Scholar 

  31. Grecea ML, Dimian AC, Tanase S, Subbiah V, Rothenberg G. Sulfated zirconia as a robust superacid catalyst for multiproduct fatty acid esterification. Cat Sci Technol. 2012;2:1500–6.

    Article  CAS  Google Scholar 

  32. Alhassan FH, Rashid U, Taufiq-Yap YH. Synthesis of waste cooking oil-based biodiesel via effectual recyclable bi-functional Fe2O3-MnO-SO4 2−/ZrO2 nanoparticle solid catalyst. Fuel. 2015;142:38–45.

    Article  CAS  Google Scholar 

  33. Xie W, Wang T. Biodiesel production from soybean oil transesterification using tin oxide-supported WO3 catalysts. Fuel Process Technol. 2013;109:150–5.

    Article  CAS  Google Scholar 

  34. Xie W, Wang H, Li H. Silica-supported tin oxides as heterogeneous acid catalysts for transesterification of soybean oil with methanol. Ind Eng Chem Res. 2011;51:225–31.

    Article  CAS  Google Scholar 

  35. Kafuku G, Lam MK, Kansedo J, Lee KT, Mbarawa M. Heterogeneous catalyzed biodiesel production from Moringa oleifera oil. Fuel Process Technol. 2010;91:1525–9.

    Article  CAS  Google Scholar 

  36. Madhuvilakku R, Piraman S. Biodiesel synthesis by TiO2-ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process. Bioresour Technol. 2013;150:55–9.

    Article  CAS  PubMed  Google Scholar 

  37. de Almeida RM, Noda LK, Gonçalves NS, Meneghetti SMP, Meneghetti MR. Transesterification reaction of vegetable oils, using superacid sulfated TiO2-base catalysts. Appl Catal A-Gen. 2008;347:100–5.

    Article  CAS  Google Scholar 

  38. Zhou HB, Cao Y, Li J. Research of preparation of SO4 2−/TiO2-ZrO2 and its application on synthesis of biodiesel from waste cooking oil. Appl Mech Mater Trans Tech Publ. 2013;316:906–10.

    Article  CAS  Google Scholar 

  39. Zhang Q, Luo J, Wei Y. A silica gel supported dual acidic ionic liquid: an efficient and recyclable heterogeneous catalyst for the one-pot synthesis of amidoalkyl naphthols. Green Chem. 2010;12:2246–54.

    Article  CAS  Google Scholar 

  40. Fang D, Yang J, Jiao C. Dicationic ionic liquids as environmentally benign catalysts for biodiesel synthesis. ACS Catal. 2010;1:42–7.

    Article  CAS  Google Scholar 

  41. Wu Q, Chen H, Han M, Wang D, Wang J. Transesterification of cottonseed oil catalyzed by Brønsted acidic ionic liquids. Ind Eng Chem Res. 2007;46:7955–60.

    Article  CAS  Google Scholar 

  42. Liang X, Yang J. Synthesis of a novel multi-SO3H functionalized ionic liquid and its catalytic activities for biodiesel synthesis. Green Chem. 2010;12:201–4.

    Article  CAS  Google Scholar 

  43. Liang X, Gong G, Wu H, Yang J. Highly efficient procedure for the synthesis of biodiesel from soybean oil using chloroaluminate ionic liquid as catalyst. Fuel. 2009;88:613–6.

    Article  CAS  Google Scholar 

  44. Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG. Esterification and transesterification on tungstated zirconia: effect of calcination temperature. J Catal. 2007;247:43–50.

    Article  CAS  Google Scholar 

  45. Di Serio M, Tesser R, Dimiccoli M, Cammarota F, Nastasi M, Santacesaria E. Synthesis of biodiesel via homogeneous Lewis acid catalyst. J Mol Catal A-Chem. 2005;239:111–5.

    Article  CAS  Google Scholar 

  46. Liu S, Wang Z, Li K, Li L, Yu S, Liu F, Song Z. Brønsted-Lewis acidic ionic liquid for the “one-pot” synthesis of biodiesel from waste oil. J Renew Sustain Energ. 2013;5:023111.

    Article  CAS  Google Scholar 

  47. Li J, Peng X, Luo M, Zhao CJ, CB G, YG Z, YJ F. Biodiesel production from Camptotheca acuminata seed oil catalyzed by novel Brönsted-Lewis acidic ionic liquid. Appl Energy. 2014;115:438–44.

    Article  CAS  Google Scholar 

  48. Yin S, Sun J, Liu B, Zhang Z. Magnetic material grafted cross-linked imidazolium based polyionic liquids: an efficient acid catalyst for the synthesis of promising liquid fuel 5-ethoxymethylfurfural from carbohydrates. J Mater Chem A. 2015;3:4992–9.

    Article  CAS  Google Scholar 

  49. Xu Z, Wan H, Miao J, Han M, Yang C, Guan GF. Reusable and efficient polystyrene-supported acidic ionic liquid catalyst for esterifications. J Mol Catal A-Chem. 2010;332:152–7.

    Article  CAS  Google Scholar 

  50. Zhang L, Cui Y, Zhang C, Wang L, Wan H, Guan GF. Biodiesel production by esterification of oleic acid over brønsted acidic ionic liquid supported onto Fe-incorporated SBA-15. Ind Eng Chem Res. 2012;51:16590–6.

    Article  CAS  Google Scholar 

  51. Pan H, Liu XF, Zhang H, Yang KL, Huang S, Yang S. Multi-SO3H functionalized mesoporous polymeric acid catalyst for biodiesel production and fructose-to-biodiesel additive conversion. Renew Energy. 2017;107:245–52.

    Article  CAS  Google Scholar 

  52. Liang XZ. Novel acidic ionic liquid polymer for biodiesel synthesis from waste oils. Appl Catal A-Gen. 2013;455:206–10.

    Article  CAS  Google Scholar 

  53. Liang XZ, Xiao H, Qi C. Efficient procedure for biodiesel synthesis from waste oils using novel solid acidic ionic liquid polymer as catalysts. Fuel Process Technol. 2013;110:109–13.

    Article  CAS  Google Scholar 

  54. Liang XZ. Novel efficient procedure for biodiesel synthesis from waste oils using solid acidic ionic liquid polymer as the catalyst. Ind Eng Chem Res. 2013;52:6894–900.

    Article  CAS  Google Scholar 

  55. Liu F, Kong W, Qi C, Zhu L, Xiao FS. Design and synthesis of mesoporous polymer-based solid acid catalysts with excellent hydrophobicity and extraordinary catalytic activity. ACS Catal. 2012;2:565–72.

    Article  CAS  Google Scholar 

  56. Noshadi I, Kanjilal B, Du S, Bollas GM, Suib SL, Provatas A, Liu F, Parnas RS. Catalyzed production of biodiesel and bio-chemicals from brown grease using Ionic Liquid functionalized ordered mesoporous polymer. Appl Energy. 2014;129:112–22.

    Article  CAS  Google Scholar 

  57. Liu F, Wang L, Sun Q, Zhu L, Meng X, Xiao FS. Transesterification catalyzed by ionic liquids on superhydrophobic mesoporous polymers: heterogeneous catalysts that are faster than homogeneous catalysts. J Am Chem Soc. 2012;134:16948–50.

    Article  CAS  PubMed  Google Scholar 

  58. Pan H, Li H, Liu XF, Zhang H, Yang KL, Huang S, Yang S. Mesoporous polymeric solid acid as efficient catalyst for (trans) esterification of crude Jatropha curcas oil. Fuel Process Technol. 2016;150:50–7.

    Article  CAS  Google Scholar 

  59. Chang B, Li Y, Guo Y, Yang B. Simple fabrication of magnetically separable mesoporous carbon sphere with excellent catalytic performance for biodiesel production. J Taiwan Inst Chem E. 2016;60:241–6.

    Article  CAS  Google Scholar 

  60. Kastner JR, Miller J, Geller DP, Locklin J, Keith LH, Johnson T. Catalytic esterification of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catal Today. 2012;190:122–32.

    Article  CAS  Google Scholar 

  61. Kang S, Ye J, Chang J. Recent advances in carbon-based sulfonated catalyst: preparation and application. Int Rev Chem Eng. 2013;5:133–44.

    Google Scholar 

  62. Takagaki A, Toda M, Okamura M, Kondo JN, Hayashi S, Domen K, Hara M. Esterification of higher fatty acids by a novel strong solid acid. Catal Today. 2006;116:157–61.

    Article  CAS  Google Scholar 

  63. Lou WY, Zong MH, Duan ZQ. Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. Bioresour Technol. 2008;99:8752–8.

    Article  CAS  PubMed  Google Scholar 

  64. Ayodele OO, Dawodu FA. Production of biodiesel from Calophyllum inophyllum oil using a cellulose-derived catalyst. Biomass Bioenergy. 2014;70:239–48.

    Article  CAS  Google Scholar 

  65. Chen G, Fang B. Preparation of solid acid catalyst from glucose-starch mixture for biodiesel production. Bioresour Technol. 2011;102:2635–40.

    Article  CAS  PubMed  Google Scholar 

  66. Dawodu FA, Ayodele O, Xin J, Zhang S, Yan D. Effective conversion of non-edible oil with high free fatty acid into biodiesel by sulphonated carbon catalyst. Appl Energy. 2014;114:819–26.

    Article  CAS  Google Scholar 

  67. Wang C, Yuan F, Liu L, Niu X, Zhu Y. Transesterification of tributyrin and dehydration of fructose over a carbon-based solid acid prepared by carbonization and sulfonation of glucose. ChemPlusChem. 2015;80:1657–65.

    Article  CAS  Google Scholar 

  68. Cai L, Meng D, Zhan S, Yang X, Liu T, Pu H, Tao X. SO3H and NH2+ functional carbon-based solid acid catalyzed transesterification and biodiesel production. RSC Adv. 2015;5:72146–9.

    Article  CAS  Google Scholar 

  69. Fukuhara K, Nakajima K, Kitano M, Hayashi S, Hara M. Transesterification of Triolein over hydrophobic microporous carbon with SO3H groups. ChemCatChem. 2015;7(23):3945–50.

    Article  CAS  Google Scholar 

  70. Shu Q, Gao J, Nawaz Z, Liao Y, Wang D, Wang J. Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst. Appl Energy. 2010;87:2589–96.

    Article  CAS  Google Scholar 

  71. Pua FL, Fang Z, Zakaria S, Guo F, Chia CH. Direct production of biodiesel from high-acid value Jatropha oil with solid acid catalyst derived from lignin. Biotechnol Biofuels. 2011;4:56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Huang M, Luo J, Fang Z, Li H. Biodiesel production catalyzed by highly acidic carbonaceous catalysts synthesized via carbonizing lignin in sub-and super-critical ethanol. Appl Catal B-Environ. 2016;190:103–14.

    Article  CAS  Google Scholar 

  73. Guan Q, Li Y, Chen Y, Shi Y, Gu J, Li B, Miao R, Chen Q, Ning P. Sulfonated multi-walled carbon nanotubes for biodiesel production through triglycerides transesterification. RSC Adv. 2017;7:7250–8.

    Article  CAS  Google Scholar 

  74. Liu H, Chen J, Chen L, Xu Y, Guo X, Fang D. Carbon nanotube-based solid Sulfonic acids as catalysts for production of Fatty Acid Methyl Ester via transesterification and esterification. ACS Sustain Chem Eng. 2016;4:3140–50.

    Article  CAS  Google Scholar 

  75. Liu F, Li B, Liu C, Kong W, Yi X, Zheng A, Qi C. Template-free synthesis of porous carbonaceous solid acids with controllable acid sites and their excellent activity for catalyzing the synthesis of biofuels and fine chemicals. Cat Sci Technol. 2016;6:2995–3007.

    Article  CAS  Google Scholar 

  76. Noshadi I, Kanjilal B, Liu F. Porous carbonaceous solid acids derived from farm animal waste and their use in catalyzing biomass transformation. Appl Catal A-Gen. 2016;513:19–29.

    Article  CAS  Google Scholar 

  77. Fihri A, Bouhrara M, Nekoueishahraki B, Basset JM, Polshettiwar V. Nanocatalysts for Suzuki cross-coupling reactions. Chem Soc Rev. 2011;40:5181–203.

    Article  CAS  PubMed  Google Scholar 

  78. Roduner E. Size matters: why nanomaterials are different. Chem Soc Rev. 2006;35:583–92.

    Article  CAS  PubMed  Google Scholar 

  79. Somorjai GA, Frei H, Park JY. Advancing the frontiers in nanocatalysis, biointerfaces, and renewable energy conversion by innovations of surface techniques. J Am Chem Soc. 2009;131:16589–605.

    Article  CAS  PubMed  Google Scholar 

  80. Goesmann H, Feldmann C. Nanoparticulate functional materials. Angew Chem Int Ed. 2010;49:1362–95.

    Article  CAS  Google Scholar 

  81. Molnár A. Efficient, selective, and recyclable palladium catalysts in carbon-carbon coupling reactions. Chem Rev. 2011;111:2251–320.

    Article  PubMed  CAS  Google Scholar 

  82. Chng LL, Erathodiyil N, Ying JY. Nanostructured catalysts for organic transformations. Acc Chem Res. 2013;46:1825–37.

    Article  CAS  PubMed  Google Scholar 

  83. Verma S, Verma D, Sinha AK, Jain SL. Palladium complex immobilized on graphene oxide-magnetic nanoparticle composites for ester synthesis by aerobic oxidative esterification of alcohols. Appl Catal A-Gen. 2015;489:17–23.

    Article  CAS  Google Scholar 

  84. Cubides-Roman DC, Pérez VH, de Castro HF, Orrego CE, Giraldo OH, Silveira EG, David GF. Ethyl esters (biodiesel) production by Pseudomonas fluorescens lipase immobilized on chitosan with magnetic properties in a bioreactor assisted by electromagnetic field. Fuel. 2017;196:481–7.

    Article  CAS  Google Scholar 

  85. Mitsudome T, Kaneda K. Advanced core–shell nanoparticle catalysts for efficient organic transformations. ChemCatChem. 2013;5:1681–91.

    Article  CAS  Google Scholar 

  86. Bai C, Liu M. Implantation of nanomaterials and nanostructures on surface and their applications. Nano Today. 2012;7:258–81.

    Article  CAS  Google Scholar 

  87. Baig RBN, Varma RS. Magnetically retrievable catalysts for organic synthesis. Chem Commun. 2013;49:752–70.

    Article  CAS  Google Scholar 

  88. Gawande MB, Branco PS, Varma RS. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodlogies. Chem Soc Rev. 2013;42:3371–93.

    Article  CAS  PubMed  Google Scholar 

  89. Roy S, Pericas MA. Functionalized nanoparticles as catalysts for enantioselective processes. Org Biomol Chem. 2009;7:2669–77.

    Article  CAS  PubMed  Google Scholar 

  90. Wang H, Covarrubias J, Prock H, Wu X, Wang D, Bossmann SH. Acid-functionalized magnetic nanoparticle as heterogeneous catalysts for biodiesel synthesis. J Phys Chem C. 2015;119:26020–8.

    Article  CAS  Google Scholar 

  91. Zhang H, Li H, Pan H, Liu X, Yang K, Huang S, Yang S. Efficient production of biodiesel with promising fuel properties from Koelreuteria integrifoliola oil using a magnetically recyclable acidic ionic liquid. Energ Conv Manage. 2017;138:45–53.

    Article  CAS  Google Scholar 

  92. Chang B, TianY SW, Liu J, Xi F, Dong X. Magnetically separable porous carbon nanospheres as solid acid catalysts. RSC Adv. 2013;3:20999–1006.

    Article  CAS  Google Scholar 

  93. Zhang F, Fang Z, Wang YT. Biodiesel production direct from high acid value oil with a novel magnetic carbonaceous acid. Appl Energy. 2015;155:637–47.

    Article  CAS  Google Scholar 

  94. Chen H, Dong M, Li Y, Kong J, Chai Z, Fu G. Facile synthesis of high-magnetization Fe3O4@ polydivinylbenzene core-shell submicrospheres. React Funct Polym. 2013;73:18–22.

    Article  CAS  Google Scholar 

  95. Rodriguez AFR, Coaquira JAH, Morales MA, Faria FSEDV, Cunha RM, Santos JG, Azevedo RB. Synthesis, characterization and magnetic properties of polymer-Fe3O4 nanocomposite. Spectrochim Acta A. 2013;100:101–3.

    Article  CAS  Google Scholar 

  96. Zhang Y, Ying JY. Main-chain organic frameworks with advanced catalytic functionalities. ACS Catal. 2015;5:2681–91.

    Article  CAS  Google Scholar 

  97. Sun Q, Dai Z, Meng X, Xiao FS. Porous polymer catalysts with hierarchical structures. Chem Soc Rev. 2015;44:6018–34.

    Article  CAS  PubMed  Google Scholar 

  98. Ngu TA, Li Z. Phosphotungstic acid-functionalized magnetic nanoparticles as an efficient and recyclable catalyst for the one-pot production of biodiesel from grease via esterification and transesterification. Green Chem. 2014;16:1202–10.

    Article  CAS  Google Scholar 

  99. Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed. 2005;44:3358–93.

    Article  CAS  Google Scholar 

  100. Han YZ, Hong L, Wang XQ, Liu JZ, Jiao J, Luo M, YJ F. Biodiesel production from Pistacia chinensis seed oil via transesterification using recyclable magnetic cellulose-based catalyst. Ind Crop Prod. 2016;89:332–8.

    Article  CAS  Google Scholar 

  101. Kalbasi RJ, Kolahdoozan M, Vanani SM. Preparation, characterization and catalyst application of ternary interpenetrating networks of poly 4-methyl vinyl pyridinium hydroxide-SiO2-Al2O3. J Solid State Chem. 2011;184:2009–16.

    Article  CAS  Google Scholar 

  102. Benessere V, Cucciolito ME, Esposito R, Lega M, Turco R, Ruffo F, Di Serio M. A novel and robust homogeneous supported catalyst for biodiesel production. Fuel. 2016;171:1–4.

    Article  CAS  Google Scholar 

  103. Zuo D, Lane J, Culy D, Schultz M, Pullar A, Waxman M. Sulfonic acid functionalized mesoporous SBA-15 catalysts for biodiesel production. Appl Catal B Environ. 2013;129:342–50.

    Article  CAS  Google Scholar 

  104. Zhang X, Su F, Song D, An S, Lu B, Guo Y. Preparation of efficient and recoverable organosulfonic acid functionalized alkyl-bridged organosilica nanotubes for esterification and transesterification. Appl Catal B-Environ. 2015;163:50–62.

    Article  CAS  Google Scholar 

  105. Léon CIS, Song D, Su F, An S, Liu H, Gao J, Leng J. Propylsulfonic acid and methyl bifunctionalized TiSBA-15 silica as an efficient heterogeneous acid catalyst for esterification and transesterification. Micropor Mesoporous Mater. 2015;204:218–25.

    Article  CAS  Google Scholar 

  106. Narkhede N, Singh S, Patel A. Recent progress on supported polyoxometalates for biodiesel synthesis via esterification and transesterification. Green Chem. 2015;17:89–107.

    Article  CAS  Google Scholar 

  107. Li B, Ma D, Li Y, Zhang Y, Li G, Shi Z, Ma S. Dual functionalized cages in metal-organic frameworks via stepwise postsynthetic modification. Chem Mater. 2016;28:4781–6.

    Article  CAS  Google Scholar 

  108. J Da Silva M, A Liberto N. Soluble and solid supported keggin heteropolyacids as catalysts in reactions for biodiesel production: challenges and recent advances. Curr Org Chem. 2016;20:1263–83.

    Article  CAS  Google Scholar 

  109. Alsalme AM, Wiper PV, Khimyak YZ, Kozhevnikova EF, Kozhevnikov IV. Solid acid catalysts based on H3PW12O40 heteropoly acid: acid and catalytic properties at a gas-solid interface. J Catal. 2010;276:181–9.

    Article  CAS  Google Scholar 

  110. Samaranch B, Ramírez de la Piscina P, Clet G, Houalla M, Gélin P, Homs N. Synthesis and characterization of Ta2O5-ZrO2 systems: structure, surface acidity, and catalytic properties. Chem Mater. 2007;19:1445–51.

    Article  CAS  Google Scholar 

  111. Kulkarni MG, Gopinath R, Meher LC, Dalai AK. Solid acid catalyzed biodiesel production by simultaneous esterification and transesterification. Green Chem. 2006;8:1056–62.

    Article  CAS  Google Scholar 

  112. Devassy BM, Halligudi SB. Zirconia-supported heteropoly acids: characterization and catalytic behavior in liquid-phase veratrole benzoylation. J Catal. 2005;236:313–23.

    Article  CAS  Google Scholar 

  113. Su F, Ma L, Guo Y, Li W. Preparation of ethane-bridged organosilica group and keggin type heteropoly acid co-functionalized ZrO2 hybrid catalyst for biodiesel synthesis from eruca sativa gars oil. Cat Sci Technol. 2012;2:2367–74.

    Article  CAS  Google Scholar 

  114. Su F, An S, Song D, Zhang X, Lu B, Guo Y. Heteropoly acid and ZrO2 bifunctionalized organosilica hollow nanospheres for esterification and transesterification. J Mater Chem A. 2014;2:14127–38.

    Article  CAS  Google Scholar 

  115. Pramanik M, Nandi M, Uyama H, Bhaumik A. Organic-inorganic hybrid porous sulfonated zinc phosphonate material: efficient catalyst for biodiesel synthesis at room temperature. Green Chem. 2012;14:2273–81.

    Article  CAS  Google Scholar 

  116. Wan H, Chen C, Wu Z, Que Y, Feng Y, Wang W, Liu X. Encapsulation of heteropolyanion-based ionic liquid within the metal-organic framework MIL-100 (Fe) for biodiesel production. ChemCatChem. 2015;7:441–9.

    Article  CAS  Google Scholar 

  117. Han M, Gu Z, Chen C, Wu Z, Que Y, Wang Q, Guan G. Efficient confinement of ionic liquids in MIL-100 (Fe) frameworks by the “impregnation-reaction-encapsulation” strategy for biodiesel production. RSC Adv. 2016;6:37110–7.

    Article  CAS  Google Scholar 

  118. DD Bala, Misra M, Chidambaram D. Solid-acid catalyzed biodiesel production, part I: biodiesel synthesis from low quality feedstock. J Clean Prod 2017;142(Part 4):4169–77.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pan, H., Zhang, H., Yang, S. (2017). Production of Biodiesel via Simultaneous Esterification and Transesterification. In: Fang, Z., Smith Jr., R., Li, H. (eds) Production of Biofuels and Chemicals with Bifunctional Catalysts. Biofuels and Biorefineries, vol 8. Springer, Singapore. https://doi.org/10.1007/978-981-10-5137-1_10

Download citation

Publish with us

Policies and ethics