Skip to main content

Cuff-induced changes of pulse arrival time: models and experimental results

  • Conference paper
  • First Online:
EMBEC & NBC 2017 (EMBEC 2017, NBC 2017)

Abstract

We present experimental evidence suggesting, contrary to previous models, that arm cuff induced pulse arrival time (PAT) changes are primarily created under the cuff, and that they increase with cuff length and decrease with arterial diameter. The observed PAT changes are consistent with a transmission line model for the cuff segment of the arm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • 1. Westhoff, T. H., Straub-Hohenbleicher, H., Schmidt, S., Tölle, M., Zidek, W., & van der Giet, M. (2005). Convenience of ambulatory blood pressure monitoring: comparison of different devices. Blood pressure monitoring, 10(5), 239-242.

    Google Scholar 

  • 2. Penaz, J., Voigt, A., & Teichmann, W. (1976). Contribution to the continuous indirect blood pressure measurement. Zeitschrift fur die gesamte innere Medizin und ihre Grenzgebiete, 31(24), 1030-1033.

    Google Scholar 

  • 3. Ilies C, Bauer M, Berg P, Rosenberg J, Hedderich J, Bein B, Hinz J, Hanss R (2012) Investigation of the agreement of a continuous non-invasive arterial pressure device in comparison with invasive radial artery measurement. Br J Anaesth 108(2):202-10.

    Google Scholar 

  • 4. Wagner JY, Negulescu I, Schöfthaler M, Hapfelmeier A, Meidert AS, Huber W, Schmid RM, Saugel B (2015) Continuous nonin-vasive arterial pressure measurement using the volume clamp method: an evaluation of the CNAP device in intensive care unit patients. J Clin Monit Comp 29(6):807-13.

    Google Scholar 

  • 5. A. Steptoe, H. Smuylan, and B. Gribbin, “Pulse Wave Velocity and Blood Pressure Change: Calibration and Applications”, Psychophysiology, Vol.13, No.5, pp. 488-493, 1976.

    Google Scholar 

  • 6. Bresch, E., Schmitt, L., De Matteis, D., & Muehlsteff, J. (2016, August). Cuff-pressure induced PAT changes—modelling and experimental verification towards calibration of blood pressure surrogates. In Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the (pp. 4252-4255). IEEE.

    Google Scholar 

  • 7. Yan, Y. S., and Y. T. Zhang. “A model-based calibration method for noninvasive and cuffless measurement of arterial blood pressure.” Biomedical Circuits and Systems Conference, 2006. BioCAS 2006. IEEE. IEEE, 2006.

    Google Scholar 

  • 8. Yan, Y. S., and Y. T. Zhang. “A novel calibration method for noninvasive blood pressure measurement using pulse transit time.” Medical Devices and Biosensors, 2007. ISSS-MDBS 2007. 4th IEEE/EMBS International Summer School and Symposium on. IEEE, 2007.

    Google Scholar 

  • 9. McCOMBIE, Devin, and Guanqun Zhang. “System for calibrating a blood pressure measurement based on vascular transit of a pulse wave.” U.S. Patent Application No. 14/833,078.

    Google Scholar 

  • 10. Solà, J., Vetter, R., Renevey, P., Chételat, O., Sartori, C., & Rimoldi, S. F. (2009). Parametric estimation of pulse arrival time: a robust approach to pulse wave velocity. Physiological measurement, 30(7), 603.

    Google Scholar 

  • 11. John, L. R. (2004). Forward electrical transmission line model of the human arterial system. Medical and Biological Engineering and Computing, 42(3), 312-321.

    Google Scholar 

  • 12. Drzewiecki, G., Hood, R., & Apple, H. (1994). Theory of the oscillometric maximum and the systolic and diastolic detection ratios. Annals of biomedical engineering, 22(1), 88-96.

    Google Scholar 

  • 13. Bramwell, J. Crighton, and Archibald Vivian Hill. “The velocity of the pulse wave in man.” Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character 93.652 (1922): 298-306.

    Google Scholar 

  • 14. Avolio, A. P. (1980). Multi-branched model of the human arterial system. Medical and Biological Engineering and Computing, 18(6), 709-718.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Bresch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Bresch, E., Muehlsteff, J., Schmitt, L. (2018). Cuff-induced changes of pulse arrival time: models and experimental results. In: Eskola, H., Väisänen, O., Viik, J., Hyttinen, J. (eds) EMBEC & NBC 2017. EMBEC NBC 2017 2017. IFMBE Proceedings, vol 65. Springer, Singapore. https://doi.org/10.1007/978-981-10-5122-7_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5122-7_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5121-0

  • Online ISBN: 978-981-10-5122-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics