Skip to main content

Automatic real time derivation of breathing rate from thermal video sequences

  • Conference paper
  • First Online:
EMBEC & NBC 2017 (EMBEC 2017, NBC 2017)

Abstract

The breathing rate (BR) is one of most important physiological parameter used for cardiopulmonary arrest prevention and for evaluating respiratory problems as (sleep) apnea, congestive heart, hypo / hyper –ventilation, asthma etc. In this paper, we propose an efficient method for non-contact estimation of BR using thermal imaging. The system is based on computer vision algorithms and sequentially performs: face detection, interest points extraction and tracking, geometric transformation between successive frames and nostril position estimation. The performance of the proposed framework is evaluated against the BR measured using a wired thermistor. The thermistor is placed near the subject nostril and is connected to an acquisition system designed for medical applications. The experimental evaluation validates the proposed methodology, returning high accuracy scores. In terms of the computational complexity, the system performs the BR estimation in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • 1. Cretikos M.A., Bellomo R., Hillman K., et al (2008) ”Respiratory rate: the neglected vital sign”, Med. J. of Australia, 188 (11) pp.657–659.

    Google Scholar 

  • 2. Seymour C.W., Kahn J.M., Cooke C.R., et al (2010)” Prediction of critical illness during out-of- hospital emergency care”, J. of the Amer. Med. Assoc. 304, pp. 747–754.

    Google Scholar 

  • 3. Camilo M.R., Sander H.H., Eckeli A.L.,et al (2014) „SOS score: an optimized score to screen acute stroke patients for obstructive sleep apnea”, Sleep Med. 15(9), pp. 1021-4.

    Google Scholar 

  • 4. Fieselmann J.F., Hendryx M.S., Helms C.M., et al (1993) “Respiratory rate predicts cardiopulmonary arrest for internal medicine inpatients”, J. of Gen. Internal Med. 8 (7) pp. 354–360.

    Google Scholar 

  • 5. Kenzaka T., Okayama M., Kuroki S., et al (2012)“Importance of vital signs to the early diagnosis and severity of sepsis: association between vital signs and sequential organ failure assessment score in patients with sepsis” Intern Med. 51(8), pp. 871-6.

    Google Scholar 

  • 6. Couceiro R., Carvalho P., Paiva R.P.et al (2014)“Detection of motion artifact patterns in photoplethysmographic signals based on time and period domain analysis” Physiol. Meas.35(12), pp. 2369–2388.

    Google Scholar 

  • 7. Cretikos M, Chen J, Hillman K, et al. (2007) „The objective medical emergency team activation criteria: a case–control study”, Resuscitation 73, pp. 62–72.

    Google Scholar 

  • 8. Klaudiny M. (2013) “High-detail temporally consistent 3D capture of facial performance”, Centre for Vision, Speech and Signal Processing, University of Surrey, UK.

    Google Scholar 

  • 9. Mostafa E., Hammoud R., Ali A., et al. (2013) “Face recognition in low resolution thermal images”, Comp. Vis. and Image Under., vol. 117(12), pp. 1689-1694.

    Google Scholar 

  • 10. Kwaśniewska A., Rumiński J.(2016) “Real-time facial feature tracking in poor quality thermal imagery,” 9th Int. Conf. on Human Sys. Inter. pp. 504-510.

    Google Scholar 

  • 11. Wang S., Liu Z., Shen P., et al. (2013)“Eye localization from thermal infrared images”, Patt.Recog.,46(10), pp. 2613-2621.

    Google Scholar 

  • 12. Basu A, Routray A, Mukherjee R, et al, (2016) “Infrared imaging based hyperventilation monitoring through respiration rate estimation”, Infrared Physics & Technology, 77, pp 382-390.

    Google Scholar 

  • 13. Viola P., Jones, M. J. (2004) “Robust Real-time Face Detection”, Int. J.Comput. Vis., 57(2), pp. 137–154.

    Google Scholar 

  • 14. Lowe D. (2004) “Distinctive Image Features from Scale-Invariant Keypoints”, Int. J.Comput.Vis..60(2), pp 91–110

    Google Scholar 

  • 15. Bay H.,Ess A., Tuytelaars T., Gool L.V. (2008) “Speeded-Up Robust Features (SURF)”, Comput. Vis. Image Underst., 110, 346–359.

    Google Scholar 

  • 16. Calonder M., Lepetit V., Strecha C. et al(2010) “Binary robust independent elementary features”. In: 11th Europ. Conf. on Comput. Vis. (ECCV) pp. 778-792

    Google Scholar 

  • 17. Tuzel O., Porikli O.; Meer F. (2006) “Region covariance: A fast descriptor for detection and classification” Europ. Conf. on Comput. Vis. (ECCV), 3952, pp. 589 -600.

    Google Scholar 

  • 18. Lucas B., Kanade T. “An iterative technique of image registration and its application to stereo”. IJCAI’81 Proc. of the 7th Int. joint conf. on Artif.Intel.1981, 2, pp.674-679.

    Google Scholar 

  • 19. Lee J. J., Kim G. (2007) “Robust Estimation of Camera Homography Using Fuzzy RANSAC”. Int. Conf. on Comput. Sci. and its App., pp. 992–1002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragos Daniel Țarălungă .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Țarălungă, D.D., Mocanu, B., Țapu, R. (2018). Automatic real time derivation of breathing rate from thermal video sequences. In: Eskola, H., Väisänen, O., Viik, J., Hyttinen, J. (eds) EMBEC & NBC 2017. EMBEC NBC 2017 2017. IFMBE Proceedings, vol 65. Springer, Singapore. https://doi.org/10.1007/978-981-10-5122-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5122-7_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5121-0

  • Online ISBN: 978-981-10-5122-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics