Classification of Congenital Deformities of Hands and Upper Limbs and Selection of Surgery Timing

  • Bin Wang
  • Wei WangEmail author
  • Feng Ni
Part of the Plastic and Reconstructive Surgery book series (PRS)


The congenital deformities of the upper limb are complicated, so establishment of a complete classification system for congenital deformities of the upper limbs is conducive to the understanding of anomaly formation, the design of clinical treatment planning, the study on clinical treatment and etiological factors, and the dissemination and academic exchange of knowledge on hand and upper limb congenital deformities.


  1. 1.
    Swanson AB. A classification for congenital malformations of the hand. Acad Med Bull New Jersey. 1964;10:166–9.Google Scholar
  2. 2.
    Kay H. A proposed international terminology for the classification of congenital limb deficiencies. Orthotics Prosthetics. 1974;28:33–48.Google Scholar
  3. 3.
    Ogino T. Modified IFSSH classification. J Japan Soc Surg Hand. 2000;17:353–65.Google Scholar
  4. 4.
    De Smet L, Matton G, Monstrey S, et al. Application of the IFSSH(3)-classification for congenital Deformitis of the hand; results and problems. Acta Orthop Belg. 1997;63(3):182–8.PubMedGoogle Scholar
  5. 5.
    Flatt AE. The care of congenital hand anomalies. 2nd ed. St. Louis: Quality Medical Publishing; 1994. p. 366–410.Google Scholar
  6. 6.
    Knight SL, SPJ K. Classification of congenital anomalies. In: Gupta A, SPJ K, Scheker LR, editors. The growing hand. London: Harcourt; 2000. p. 125–35.Google Scholar
  7. 7.
    Luijsterburg AJ, Sonneveld GJ, Vermeij-Keers C, Hovius SE. Recording congenital differences of the upper limb. J Hand Surg. 2003;28B:205–14.CrossRefGoogle Scholar
  8. 8.
    Manske PR, Oberg KC. Classification and developmental biology of congenital anomalies of the hand and upper extremity. J Bone Joint Surg. 2009;91A(Suppl 4):3–18.CrossRefGoogle Scholar
  9. 9.
    Ogino T, Minami A, Fukuda K, Kato H. Congenital anomalies of the upper limb among the Japanese in Sapporo. J Hand Surg. 1986;11B:364–71.CrossRefGoogle Scholar
  10. 10.
    Tonkin MA. Description of congenital hand anomalies: a personal view. J Hand Surg. 2006;31B:489–97.CrossRefGoogle Scholar
  11. 11.
    Upton J. The hand and upper limb: congenital anomalies. In: Mathes SJ, editor. Plastic surgery. 2nd ed. Philadephia, PA: Saunders Elsevier; 2006. p. 32–5.Google Scholar
  12. 12.
    Niemann S, Zhao C, Pascu F, Stahl U, Aulepp U, Niswander L, et al. Homozygous WNT3 mutation causes tetra-amelia in a large consanguineous family. Am J Hum Genet. 2004;74:558–63.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, et al. Fgf10 is essential for limb and lung formation. Nat Genet. 1999;21:138–41.CrossRefPubMedGoogle Scholar
  14. 14.
    Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J, et al. Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet. 1997;15:30–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Laufer E, Dahn R, Orozco OE, Yeo CY, Pisenti J, Henrique D, et al. Expression of radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature. 1997;386:366–73.CrossRefPubMedGoogle Scholar
  16. 16.
    Zakany J, Zacchetti G, Duboule D. Interactions between HOXD and Gli3 genes control the limb apical ectodermal ridge via Fgf10. Dev Biol. 2007;3061:883–93.CrossRefGoogle Scholar
  17. 17.
    Rodriguez-Esteban C, Schwabe JWR, De La Pena J, Foys B, Eshelman B, Izpisua-Belmonte JC. Radical fringe positions the apical ectodermal ridge at the dorsoventral boundary of the vertebrate limb. Nature. 1997;386:360–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Boehm B, Westerberg H, Lesnicar-Pucko G, Raja S, Rautschka M, Cotterell J, et al. The role of spatially controlled cell proliferation in limb bud morphogenesis. PLoS Biol. 2010;8:e1000420.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Barrow JR, Thomas KR, Boussadia-Zahui O, Moore R, Kemler R, Capecchi MR, et al. Ectodermal Wnt3/beta-catenin signaling is required for the establishment and maintenance of the apical ectodermal ridge. Genes Dev. 2003;17:394–409.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kawakami Y, Capdevila J, Buscher D, Itoh T, Rodriguez EC, Izpisua Belmonte JC. WNT signals control FGF-dependent limb initiation and AER induction in the chick embryo. Cell. 2001;104:891–900.CrossRefPubMedGoogle Scholar
  21. 21.
    Niswander L, Jeffrey S, Martin GR, Tickle C. A positive feedback loop coordinates growth and patterning in the vertebrate limb. Nature. 1994;371:609–12.CrossRefPubMedGoogle Scholar
  22. 22.
    Laufer E, Nelson CE, Johnson RL, Morgan BA, Tabin C. Sonic hedgehog and Fgf-4 act through a signaling cascade and feedback loop to integrate growth and patterning of the developing limb bud. Cell. 1994;79:993–1003.CrossRefPubMedGoogle Scholar
  23. 23.
    Sun X, Lewandoski M, Meyers EN, Liu YH, Maxson RE Jr, Martin GR. Conditional inactivation of Fgf4 reveals complexity of signaling during limb bud development. Nat Genet. 2000;25:83–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Riddle RD, Ensini M, Nelson C, Tsuchida T, Jessell TM, Tabin C. Induction of the LIM homeobox gene Lmx1 by WNT7a establishes dorsoventral pattern in the vertebrate limb. Cell. 1995;83:631–40.CrossRefPubMedGoogle Scholar
  25. 25.
    Vogel A, Rodriguez C, Warnken W, Izpisua Belmonte JC. Dorsal cell fate specified by chick Lmx1 during vertebrate limb development. Nature. 1995;378:716–20.CrossRefPubMedGoogle Scholar
  26. 26.
    Woods CG, Stricker S, Seemann P, Stern R, Cox J, Sherridan E, et al. Mutations in WNT7A cause a range of limb malformations, including Fuhrmann syndrome and Al-Awadi/Raas-Rothschild/ Schinzel phocomelia syndrome. Am J Hum Genet. 2006;79:402–8.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yang Y, Niswander L. Interaction between the signaling molecules WNT7a and SHH during vertebrate limb development: dorsal signals regulate anteroposterior patterning. Cell. 1995;80:939–47.CrossRefPubMedGoogle Scholar
  28. 28.
    Mackie EJ, Ahmed YA, Tatarczuch L, Chen KS, Mirams M. Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol. 2008;40:46–62.CrossRefPubMedGoogle Scholar
  29. 29.
    Clement-Jones M, Schiller S, Rao E, Blaschke RJ, Zuniga A, Zeller R, et al. The short stature homeobox gene SHOX is involved in skeletal abnormalities in Turner syndrome. Hum Mol Genet. 2000;9:695–702.CrossRefPubMedGoogle Scholar
  30. 30.
    Cobb J, Dierich A, Huss-Garcia Y, Duboule D. A mouse model for human short-stature syndromes identifies Shox2 as an upstream regulator of Runx2 during long-bone development. Proc Natl Acad Sci USA. 2006;103:4511–5.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Summerbell D. A quantitative analysis of the effect of excision of the AER from the chick limb-bud. J Embryol Exp Morphol. 1974;32:651–60.PubMedGoogle Scholar
  32. 32.
    Yu K, Ornitz DM. FGF signaling regulates mesenchymal differentiation and skeletal patterning along the limb bud proximodistal axis. Development. 2008;135:483–91.CrossRefPubMedGoogle Scholar
  33. 33.
    Lu P, Yu Y, Perdue Y, Werb Z. The apical ectodermal ridge is a timer for generating distal limb progenitors. Development. 2008;135:1395–405.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Summerbell D, Lewis JH. Time, place and positional value in the chick limb-bud. J Embryol Exp Morphol. 1975;33:621–43.PubMedGoogle Scholar
  35. 35.
    Winkel A, Stricker S, Tylzanowski P, Seiffart V, Mundlos S, Gross G, et al. Wnt-ligand-dependent interaction of TAK1 (TGF-betaactivated kinase-1) with the receptor tyrosine kinase Ror2 modulates canonical Wnt-signalling. Cell Signal. 2008;20:2134–44.CrossRefPubMedGoogle Scholar
  36. 36.
    Galloway JL, Delgado I, Ros MA, Tabin CJ. A reevaluation of X-irradiation-induced phocomelia and proximodistal limb patterning. Nature. 2009;460:400–4.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Mariani FV, Ahn CP, Martin GR. Genetic evidence that FGFs have an instructive role in limb proximal-distal patterning. Nature. 2008;453:401–5.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Tabin C, Wolpert L. Rethinking the proximodistal axis of the vertebrate limb in the molecular era. Genes Dev. 2007;21:1433–42.CrossRefPubMedGoogle Scholar
  39. 39.
    Britto JA, Chan JC, Evans RD, Hayward RD, Jones BM. Differential expression of fibroblast growth factor receptors in human digital development suggests common pathogenesis in complex acrosyndactyly and craniosynostosis. Plast Reconstr Surg. 2001;107:1331–8.CrossRefPubMedGoogle Scholar
  40. 40.
    Towers M, Mahood R, Yin Y, Tickle C. Integration of growth and specification in chick wing digit-patterning. Nature. 2008;452:882–6.CrossRefPubMedGoogle Scholar
  41. 41.
    Zhu J, Nakamura E, Nguyen MT, Bao X, Akiyama H, Mackem S. Uncoupling sonic hedgehog control of pattern and expansion of the developing limb bud. Dev Cell. 2008;14:624–32.CrossRefPubMedGoogle Scholar
  42. 42.
    Tytherleigh-Strong G, Hooper G. The classification of phocomelia. J Hand Surg. 2003;28B:215–7.CrossRefGoogle Scholar
  43. 43.
    Goldfarb CA, Manske PR, Busa R, Mills J, Carter P, Ezaki M. Upper-extremity phocomelia reexamined: a longitudinal dysplasia. J Bone Joint Surg. 2005;87A:2639–48.Google Scholar
  44. 44.
    Cygan JA, Johnson RL, McMahon AP. Novel regulatory interactions revealed by studies of murine limb pattern in Wnt-7a and En-1 mutants. Development. 1997;124:5021–32.PubMedGoogle Scholar
  45. 45.
    Chen H, Lun Y, Ovchinnikov D, Kokubo H, Oberg KC, Pepicelli CV, et al. Limb and kidney defects in Lmx1b mutant mice suggest an involvement of LMX1B in human nail patella syndrome. Nat Genet. 1998;19:51–5.CrossRefPubMedGoogle Scholar
  46. 46.
    Dlugaszewska B, Silahtaroglu A, Menzel C, Kubart S, Cohen M, Mundlos S, et al. Breakpoints around the HOXD cluster result in various limb malformations. J Med Genet. 2006;43:111–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Knezevic V, De SR, Schughart K, Huffstadt U, Chiang C, Mahon KA, et al. Hoxd-12 differentially affects preaxial and postaxial chondrogenic branches in the limb and regulates sonic hedgehog in a positive feedback loop. Development. 1997;124:4523–36.PubMedGoogle Scholar
  48. 48.
    Zakany J, Kmita M, Duboule D. A dual role for Hox genes in limb anterior-posterior asymmetry. Science. 2004;304:1669–72.CrossRefPubMedGoogle Scholar
  49. 49.
    Dahn RD, Fallon JF. Interdigital regulation of digit identity and homeotic transformation by modulated BMP signaling. Science. 2000;289:438–41.CrossRefPubMedGoogle Scholar
  50. 50.
    Weatherbee SD, Behringer RR, Rasweiler JJ, Niswander LA. Interdigital webbing retention in bat wings illustrates genetic changes underlying amniote limb diversification. Proc Natl Acad Sci USA. 2006;103:15103–7.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Yoon BS, Pogue R, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, et al. BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways. Development. 2006;133:4667–78.CrossRefPubMedGoogle Scholar
  52. 52.
    Suzuki T, Hasso SM, Fallon JF. Unique SMAD1/5/8 activity at the phalanx-forming region determines digit identity. Proc Natl Acad Sci USA. 2008;105:4185–90.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Laufer E, Pizette S, Zou H, Orozco OE, Niswander L. BMP expression in duck interdigital webbing: a reanalysis. Science. 1997;278:305.CrossRefPubMedGoogle Scholar
  54. 54.
    Guha U, Gomes WA, Kobayashi T, Pestell RG, Kessler JA. In vivo evidence that BMP signaling is necessary for apoptosis in the mouse limb. Dev Biol. 2002;249:108–20.CrossRefPubMedGoogle Scholar
  55. 55.
    Wang B, Fallon JF, Beachy PA. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell. 2000;100:423–34.CrossRefPubMedGoogle Scholar
  56. 56.
    Radhakrishna U, Blouin JL, Mehenni H, Patel UC, Patel MN, Solanki JV, et al. Mapping one form of autosomal dominant postaxial polydactyly type A to chromosome 7p15-q11.23 by linkage analysis. Am J Hum Genet. 1997;60:597–604.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Furniss D, Critchley P, Giele H, Wilkie AO. Nonsense-mediated decay and the molecular pathogenesis of mutations in SALL1 and GLI3. Am J Med Genet A. 2007;143A:3150–60.CrossRefPubMedGoogle Scholar
  58. 58.
    Radhakrishna U, Bornholdt D, Scott HS, Patel UC, Rossier C, Engel H, et al. The phenotypic spectrum of GLI3 morphopathies includes autosomal dominant preaxial polydactyly type-IV and postaxial polydactyly type-A/B; No phenotype prediction from the position of GLI3 mutations. Am J Hum Genet. 1999;65:645–55.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Swanson AB, Brown KS. Hereditary triphalangeal thumb. J Hered. 1962;53:259–65.CrossRefGoogle Scholar
  60. 60.
    Farooq M, Troelsen JT, Boyd M, Eiberg H, Hansen L, Hussain MS, et al. Preaxial polydactyly/triphalangeal thumb is associated with changed transcription factor-binding affinity in a family with a novel point mutation in the long-range cis-regulatory element ZRS. Eur J Hum Genet. 2010;18:733–6. Epub 2010 Jan 13.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Wieczorek D, Pawlik B, Li Y, Akarsu NA, Caliebe A, May KJ, et al. A specific mutation in the distant sonic hedgehog (SHH) cis-regulator (ZRS) causes Werner mesomelic syndrome (WMS) while complete ZRS duplications underlie Haas type polysyndactyly and preaxial polydactyly (PPD) with or without triphalangeal thumb. Hum Mutat. 2010;31:81–9.CrossRefPubMedGoogle Scholar
  62. 62.
    Muragaki Y, Mundlos S, Upton J, Olsen BR. Altered growth and branching patterns in synpolydactyly caused by mutations in HOXD13. Science. 1996;272:548–51.CrossRefPubMedGoogle Scholar
  63. 63.
    Goodman FR, Bacchelli C, Brady AF, Brueton LA, Fryns JP, Mortlock DP, et al. Novel HOXA13 mutations and the phenotypic spectrum of hand-foot-genital syndrome. Am J Hum Genet. 2000;67:197–202.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Mortlock DP, Innis JW. Mutation of hoxa-13 in hand-foot-genital syndrome. Nat Genet. 1997;15:179–80.CrossRefPubMedGoogle Scholar
  65. 65.
    Mundlos S. The brachydactylies: a molecular disease family. Clin Genet. 2009;76:123–36.CrossRefPubMedGoogle Scholar
  66. 66.
    Akiyama H, Chaboissier MC, Martin JF, Schedl A, de Crombrugghe B. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 2002;16:2813–28.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Ogino T. Teratogenic relationship between polydactyly, syndactyly and cleft hand. J Hand Surg. 1990;15B:201–9.CrossRefGoogle Scholar
  68. 68.
    Naruse T, Takahara M, Takagi M, Oberg KC, Ogino T. Busulfaninduced central polydactyly, syndactyly and cleft hand or foot: a common mechanism of disruption leads to divergent phenotypes. Dev Growth Differ. 2007;49:533–41.CrossRefPubMedGoogle Scholar
  69. 69.
    Debeer P, Peeters H, Driess S, De Smet L, Freese K, Matthijs G, et al. Variable phenotype in Greig cephalopolysyndactyly syndrome: clinical and radiological findings in 4 independent families and 3 sporadic cases with identified GLI3 mutations. Am J Med Genet A. 2003;120A:49–58.CrossRefPubMedGoogle Scholar
  70. 70.
    Klopocki E, Ott CE, Benatar N, Ullmann R, Mundlos S, Lehmann K. A microduplication of the long range SHH limb regulator (ZRS) is associated with triphalangeal thumb-polysyndactyly syndrome. J Med Genet. 2008;45:370–5.CrossRefPubMedGoogle Scholar
  71. 71.
    Lettice LA, Hill RE. Preaxial polydactyly: a model for defective long-range regulation in congenital abnormalities. Curr Opin Genet Dev. 2005;15:294–300.CrossRefPubMedGoogle Scholar
  72. 72.
    Sun M, Ma F, Zeng X, Liu Q, Zhao XL, Wu FX, et al. Triphalangeal thumb-polysyndactyly syndrome and syndactyly type IV are caused by genomic duplications involving the long range, limb-specific SHH enhancer. J Med Genet. 2008;45:589–95.CrossRefPubMedGoogle Scholar
  73. 73.
    Lettice LA, Heaney SJ, Purdie LA, Li L, de Beer P, Oostra BA, et al. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet. 2003;12:1725–35.CrossRefPubMedGoogle Scholar
  74. 74.
    Lettice LA, Hill AE, Devenney PS, Hill RE. Point mutations in a distant sonic hedgehog cis-regulator generate a variable regulatory output responsible for preaxial polydactyly. Hum Mol Genet. 2008;17:978–85.CrossRefPubMedGoogle Scholar
  75. 75.
    Maas SA, Fallon JF. Single base pair change in the long-range sonic hedgehog limb-specific enhancer is a genetic basis for preaxial polydactyly. Dev Dyn. 2005;232:345–8.CrossRefPubMedGoogle Scholar
  76. 76.
    Ogino T. A clinical and experimental study on teratogenic mechanism of cleft hand, polydactyly and syndactyly [in Japanese]. Nippon Seikeigeka Gakkai Zasshi. 1979;53:535–43.PubMedGoogle Scholar
  77. 77.
    Bamshad M, Van Heest AE, Pleasure D. Arthrogryposis: a review and update. J Bone Joint Surg. 2009;91A(Suppl 4):40–6.CrossRefGoogle Scholar
  78. 78.
    Navti OB, Kinning E, Vasudevan P, Barrow M, Porter H, Howarth E, et al. Review of perinatal management of arthrogryposis at a large UK teaching hospital serving a multiethnic population. Prenat Diagn. 2010;30:49–56.PubMedGoogle Scholar
  79. 79.
    Dimitraki M, Tsikouras P, Bouchlariotou S, Dafopoulos A, Konstantou E, Liberis V. Prenatal assessment of arthrogryposis. A review of the literature. J Matern Fetal Neonatal Med. 2011;24(1):32–6.CrossRefPubMedGoogle Scholar
  80. 80.
    Wang W. Plastic surgery. Hangzhou: Zhejiang Science and Technology Press; 1999.Google Scholar
  81. 81.
    American Society for Surgery of the Hand Map of Hand Surgery Developed by the Hand Surgery Map Task Force copyright 2001 taken from internet.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Zhejiang Science and Technology Publishing House 2017

Authors and Affiliations

  1. 1.Department of Plastic and Reconstructive SurgeryShanghai Ninth People Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
  2. 2.Shanghai Ninth People Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina

Personalised recommendations