Skip to main content

Embryonic Auxanology, Etiology, and Pathology of Congenital Deformities of the Hands and Upper Limbs

  • Chapter
  • First Online:
Congenital Deformities of the Hand and Upper Limb

Part of the book series: Plastic and Reconstructive Surgery ((PRS))

  • 935 Accesses

Abstract

Embryonic development period is a period starting from fertilization of eggs to the formation of main structure of the body, as for human beings, the 8 weeks from postfertilization to embryogenesis. The development period of limbs is basically the same as that of other human organs, and its duration is from the fourth to eighth week of embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Burke AC, Nelson CE, Morgan BA, Tabin C. Hox genes and the evolution of vertebrate axial morphology. Development. 1995;121:333–46.

    CAS  PubMed  Google Scholar 

  2. Ng JK, Kawakami Y, Buscher D, Raya A, Itoh T, Koth CM, et al. The limb identity gene Tbx5 promotes limb initiation by interacting with Wnt2b and Fgf10. Development. 2002;129:5161–70.

    CAS  PubMed  Google Scholar 

  3. Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, et al. Fgf10 is essential for limb and lung formation. Nat Genet. 1999;21:138–41.

    Article  CAS  PubMed  Google Scholar 

  4. Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J, et al. Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet. 1997;15:30–5.

    Article  CAS  PubMed  Google Scholar 

  5. Laufer E, Dahn R, Orozco OE, Yeo CY, Pisenti J, Henrique D, et al. Expression of radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature. 1997;386:366–73.

    Article  CAS  PubMed  Google Scholar 

  6. Niemann S, Zhao C, Pascu F, Stahl U, Aulepp U, Niswander L, et al. Homozygous WNT3 mutation causes tetra-amelia in a large consanguineous family. Am J Hum Genet. 2004;74:558–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zakany J, Zacchetti G, Duboule D. Interactions between HOXD and Gli3 genes control the limb apical ectodermal ridge via Fgf10. Dev Biol. 2007;3061:883–93.

    Article  Google Scholar 

  8. Rodriguez-Esteban C, Schwabe JWR, De La Pena J, Foys B, Eshelman B, Izpisua-Belmonte JC. Radical fringe positions the apical ectodermal ridge at the dorsoventral boundary of the vertebrate limb. Nature. 1997;386:360–5.

    Article  CAS  PubMed  Google Scholar 

  9. Boehm B, Westerberg H, Lesnicar-Pucko G, Raja S, Rautschka M, Cotterell J, et al. The role of spatially controlled cell proliferation in limb bud morphogenesis. PLoS Biol. 2010;8:e1000420.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Barrow JR, Thomas KR, Boussadia-Zahui O, Moore R, Kemler R, Capecchi MR, et al. Ectodermal Wnt3/beta-catenin signaling is required for the establishment and maintenance of the apical ectodermal ridge. Genes Dev. 2003;17:394–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kawakami Y, Capdevila J, Buscher D, Itoh T, Rodriguez EC, Izpisua Belmonte JC. WNT signals control FGF-dependent limb initiation and AER induction in the chick embryo. Cell. 2001;104:891–900.

    Article  CAS  PubMed  Google Scholar 

  12. Saunders JW Jr. Is the progress zone model a victim of progress. Cell. 2002;110:541–3.

    Article  PubMed  Google Scholar 

  13. Johnson RL, Tabin CJ. Molecular models for vertebrate limb development. Cell. 1997;90:979–90.

    Article  CAS  PubMed  Google Scholar 

  14. Zguricas J, Bakker WF, Heus H, Lindhout D, Heutink P, Hovius SER. Genetics of limb development and congenital hand malformations. Plast Reconstr Surg. 1998;101:1126–35.

    Article  CAS  PubMed  Google Scholar 

  15. Saunders JW. The proximo-distal sequence of origin of the parts of the chick wing and the role of ectoderm. J Exp Zool. 1948;108:363–403.

    Article  PubMed  Google Scholar 

  16. Parr BA, McMahon AP. Dorsalizing signal wnt7a required for normal polarity of DV and AP axes of mouse limb. Nature. 1995;374:350–3.

    Article  CAS  PubMed  Google Scholar 

  17. Vogel A, Tickle C. Fgf-4 maintains polarizing activity of posterior limb bud cells in vivo and in vitro. Development. 1993;119:199–206.

    CAS  PubMed  Google Scholar 

  18. Shampo MA, Kyle RA. Maria Montessori (1870-1952). JAMA. 1976;235:815.

    Article  CAS  PubMed  Google Scholar 

  19. Simoneau M, Paillard J, Bard C, Teasdale N, Martin O, Fleury M, Lamarre Y. Role of the feedforward command and reafferent information in the coordination of a passing prehension task. Exp Brain Res. 1999;128:236.

    Article  CAS  PubMed  Google Scholar 

  20. Bowen R, Hinchliffe JH, Border TJ, Reeve AMF. The fate map of the chick forelimb-bud and its bearing on hypothesized developmental control mechanisms. Anat Embryol. 1989;179:269.

    Article  CAS  PubMed  Google Scholar 

  21. Carrington JE, Fallon JF. Initial budding is independent of apical ectodermal ridge activity: evidence from a limbless mutant. Development. 1988;104:361.

    CAS  PubMed  Google Scholar 

  22. Christ B, Jacob HJ, Jacob M, Brand B. Principles of hand ontogenesis in man. Acta Morphol Neerl Scand. 1986;24:249.

    CAS  PubMed  Google Scholar 

  23. Kelly RO, Fallen JF. The development limb: an analysis of interacting cells and tissue in a model morphogenetic system. In: Connelly TG, Brinkley LL, Carlson BM, editors. Morphogenesis and pattern formation. New York: Raven Press; 1981.

    Google Scholar 

  24. Muneoka K, Wanek N, Bryant SV. Mammalian limb bud development: in site fate maps of early hind-limb buds. J Exp Zool. 1989;249:50.

    Article  CAS  PubMed  Google Scholar 

  25. Rubin L, Saunders JW Jr. Ectodermal-mesodermal interactions in the growth of limb buds in the chick embryo: constancy and temporal limits of the ectodermal induction. Dev Biol. 1972;28:94.

    Article  CAS  PubMed  Google Scholar 

  26. Tosney K, Landmesser LT. Pattern and specificity of axonal outgrowth following varying degrees of chick limb bud ablation. J Neurosci. 1984;4:2518.

    CAS  PubMed  Google Scholar 

  27. Bin L, Yingmao G. Human Embryology. Beijing: People’s Medical Publishing House, 1996.

    Google Scholar 

  28. Wei W. Plastic Surgery Science. Hangzhou: Zhejiang Science and Technology Press. 1999:1214-48.

    Google Scholar 

  29. Zhongzhi Z. Histology and Embryology. Fifth Edition. Beijing: People’s Medical Publishing House, 2001.

    Google Scholar 

  30. Guangxiang H, Wei W. Congenital Hand Anomalies. Beijing, People’s Medical Publishing House, 2004.

    Google Scholar 

  31. Pehoski C. Cortical control of skilled movement of the hand. In: Henderson A, Pehoski C, editors. Hand function in the child. St Louis: Moshy-Yearbook; 1995.

    Google Scholar 

  32. Erhardt RP. Developmental hand dysfunction: theory, assessment, and treatment. 2nd ed. San Antonio: Therapy Skill Builder; 1994.

    Google Scholar 

  33. Exner CE. In-hand manipulation skills. In: Case-Smith J, Pehoski C, editors. Development of hand skills in the child. Bethesda: The American Occupational Therapy Association Inc; 1992. p. 13–33.

    Google Scholar 

  34. Kaplan M. Motor learning: implications for occupational therapy and neurodevelopmental treatment. DDSIS Newslett. 1994;17:1–4.

    Google Scholar 

  35. Napier JR, Napier PH. Handbook of living primates. New York: Academic Press; 1967.

    Google Scholar 

  36. Gebhard AR, Ottenbacher KJ, Lane SJ. Interrater reliability of the Peabody Motor Scales: fine motor scale. Am J Occup Ther. 1994;48:976–81.

    Article  CAS  PubMed  Google Scholar 

  37. Folio M, Fewell RF. Peabody developmental motor scales. 2d ed. Austin: Pro-Ed; 2000.

    Google Scholar 

  38. Flatt AE. The care of congenital hand deformities. 2nd ed. St. Louis: Quality Medical Publishing; 1994.

    Google Scholar 

  39. Hu ZJ, Yu XF, Li QH, Zhang AJ, Deng X, Zhang AY. One family investigation and pathogeny research on ectrodactyly, absence of radius side part palm and split foot malformation. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2004;21(5):482–4.

    CAS  PubMed  Google Scholar 

  40. Ianakiev P, Kilpatrick MW, Toudjarska I, Basel D, Beighton P, Tsipouras P. Split-hand/split-foot malformation is caused by mutations in the p63 gene on 3q27. Am J Hum Genet. 2000;67(1):59–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sifakis S, Basel D, Ianakiev P, Kilpatrick M, Tsipouras P. Distal limb malformations: underlying mechanisms and clinical associations. Clin Genet. 2001;60(3):165–72.

    Article  CAS  PubMed  Google Scholar 

  42. Zheng L, Huizhen W, Shijun J. Congenital Congenital. Beijing: People’s Medical Publishing House, 2000:18–9.

    Google Scholar 

  43. Rios JJ, Paria N, Burns DK, Israel BA, Cornelia R, Wise CA, Ezaki M. Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly. Hum Mol Genet. 2013;22(3):444–51.

    Article  CAS  PubMed  Google Scholar 

  44. Krengel S, Fustes-Morales A, Carrasco D, Vázquez M, Durán-McKinster C, Ruiz-Maldonado R. Macrodactyly: report of eight cases and review of the literature. Pediatr Dermatol. 2000;17(4):270–6.

    Article  CAS  PubMed  Google Scholar 

  45. Al-Qattan MM, Al Abdulkareem I, Al Haidan Y, Al Balwi M. A novel mutation in the SHH long-range regulator (ZRS) is associated with preaxial polydactyly, triphalangeal thumb, and severe radial ray deficiency. Am J Med Genet A. 2012;158A(10):2610–5.

    Article  PubMed  Google Scholar 

  46. Faiyaz ul Haque M, Uhlhaas S, Knapp M, et al. Mapping of the gene for X-chromosomal split-hand/split-foot anomaly to Xq26-q26.1. Hum Genet. 1993;91:17–9.

    Article  CAS  PubMed  Google Scholar 

  47. Celli J, Duijf P, Hamel BC, et al. Heterozygous germline mutations in the p53 homolog p63 are the cause of EEC syndrome. Cell. 1999;99:143–53.

    Article  CAS  PubMed  Google Scholar 

  48. Wessagowit V, Mellerio JE, Pembroke AC, McGrath JA. Heterozygous germline missense mutation in the p63 gene underlying EEC syndrome. Clin Exp Dermatol. 2000;25:441–3.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghong Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd. and Zhejiang Science and Technology Publishing House

About this chapter

Cite this chapter

Xu, J. et al. (2017). Embryonic Auxanology, Etiology, and Pathology of Congenital Deformities of the Hands and Upper Limbs. In: Wang, W., Yao, J. (eds) Congenital Deformities of the Hand and Upper Limb. Plastic and Reconstructive Surgery. Springer, Singapore. https://doi.org/10.1007/978-981-10-5101-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5101-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5100-5

  • Online ISBN: 978-981-10-5101-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics