Embryonic Auxanology, Etiology, and Pathology of Congenital Deformities of the Hands and Upper Limbs

  • Jinghong XuEmail author
  • Jialiang Chen
  • Wei Wang
  • Bin Wang
  • Yijia Yu
  • Bo Chen
  • Jianmin Yao
Part of the Plastic and Reconstructive Surgery book series (PRS)


Embryonic development period is a period starting from fertilization of eggs to the formation of main structure of the body, as for human beings, the 8 weeks from postfertilization to embryogenesis. The development period of limbs is basically the same as that of other human organs, and its duration is from the fourth to eighth week of embryogenesis.


  1. 1.
    Burke AC, Nelson CE, Morgan BA, Tabin C. Hox genes and the evolution of vertebrate axial morphology. Development. 1995;121:333–46.PubMedGoogle Scholar
  2. 2.
    Ng JK, Kawakami Y, Buscher D, Raya A, Itoh T, Koth CM, et al. The limb identity gene Tbx5 promotes limb initiation by interacting with Wnt2b and Fgf10. Development. 2002;129:5161–70.PubMedGoogle Scholar
  3. 3.
    Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, et al. Fgf10 is essential for limb and lung formation. Nat Genet. 1999;21:138–41.CrossRefPubMedGoogle Scholar
  4. 4.
    Basson CT, Bachinsky DR, Lin RC, Levi T, Elkins JA, Soults J, et al. Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat Genet. 1997;15:30–5.CrossRefPubMedGoogle Scholar
  5. 5.
    Laufer E, Dahn R, Orozco OE, Yeo CY, Pisenti J, Henrique D, et al. Expression of radical fringe in limb-bud ectoderm regulates apical ectodermal ridge formation. Nature. 1997;386:366–73.CrossRefPubMedGoogle Scholar
  6. 6.
    Niemann S, Zhao C, Pascu F, Stahl U, Aulepp U, Niswander L, et al. Homozygous WNT3 mutation causes tetra-amelia in a large consanguineous family. Am J Hum Genet. 2004;74:558–63.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zakany J, Zacchetti G, Duboule D. Interactions between HOXD and Gli3 genes control the limb apical ectodermal ridge via Fgf10. Dev Biol. 2007;3061:883–93.CrossRefGoogle Scholar
  8. 8.
    Rodriguez-Esteban C, Schwabe JWR, De La Pena J, Foys B, Eshelman B, Izpisua-Belmonte JC. Radical fringe positions the apical ectodermal ridge at the dorsoventral boundary of the vertebrate limb. Nature. 1997;386:360–5.CrossRefPubMedGoogle Scholar
  9. 9.
    Boehm B, Westerberg H, Lesnicar-Pucko G, Raja S, Rautschka M, Cotterell J, et al. The role of spatially controlled cell proliferation in limb bud morphogenesis. PLoS Biol. 2010;8:e1000420.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Barrow JR, Thomas KR, Boussadia-Zahui O, Moore R, Kemler R, Capecchi MR, et al. Ectodermal Wnt3/beta-catenin signaling is required for the establishment and maintenance of the apical ectodermal ridge. Genes Dev. 2003;17:394–409.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kawakami Y, Capdevila J, Buscher D, Itoh T, Rodriguez EC, Izpisua Belmonte JC. WNT signals control FGF-dependent limb initiation and AER induction in the chick embryo. Cell. 2001;104:891–900.CrossRefPubMedGoogle Scholar
  12. 12.
    Saunders JW Jr. Is the progress zone model a victim of progress. Cell. 2002;110:541–3.CrossRefPubMedGoogle Scholar
  13. 13.
    Johnson RL, Tabin CJ. Molecular models for vertebrate limb development. Cell. 1997;90:979–90.CrossRefPubMedGoogle Scholar
  14. 14.
    Zguricas J, Bakker WF, Heus H, Lindhout D, Heutink P, Hovius SER. Genetics of limb development and congenital hand malformations. Plast Reconstr Surg. 1998;101:1126–35.CrossRefPubMedGoogle Scholar
  15. 15.
    Saunders JW. The proximo-distal sequence of origin of the parts of the chick wing and the role of ectoderm. J Exp Zool. 1948;108:363–403.CrossRefPubMedGoogle Scholar
  16. 16.
    Parr BA, McMahon AP. Dorsalizing signal wnt7a required for normal polarity of DV and AP axes of mouse limb. Nature. 1995;374:350–3.CrossRefPubMedGoogle Scholar
  17. 17.
    Vogel A, Tickle C. Fgf-4 maintains polarizing activity of posterior limb bud cells in vivo and in vitro. Development. 1993;119:199–206.PubMedGoogle Scholar
  18. 18.
    Shampo MA, Kyle RA. Maria Montessori (1870-1952). JAMA. 1976;235:815.CrossRefPubMedGoogle Scholar
  19. 19.
    Simoneau M, Paillard J, Bard C, Teasdale N, Martin O, Fleury M, Lamarre Y. Role of the feedforward command and reafferent information in the coordination of a passing prehension task. Exp Brain Res. 1999;128:236.CrossRefPubMedGoogle Scholar
  20. 20.
    Bowen R, Hinchliffe JH, Border TJ, Reeve AMF. The fate map of the chick forelimb-bud and its bearing on hypothesized developmental control mechanisms. Anat Embryol. 1989;179:269.CrossRefPubMedGoogle Scholar
  21. 21.
    Carrington JE, Fallon JF. Initial budding is independent of apical ectodermal ridge activity: evidence from a limbless mutant. Development. 1988;104:361.PubMedGoogle Scholar
  22. 22.
    Christ B, Jacob HJ, Jacob M, Brand B. Principles of hand ontogenesis in man. Acta Morphol Neerl Scand. 1986;24:249.PubMedGoogle Scholar
  23. 23.
    Kelly RO, Fallen JF. The development limb: an analysis of interacting cells and tissue in a model morphogenetic system. In: Connelly TG, Brinkley LL, Carlson BM, editors. Morphogenesis and pattern formation. New York: Raven Press; 1981.Google Scholar
  24. 24.
    Muneoka K, Wanek N, Bryant SV. Mammalian limb bud development: in site fate maps of early hind-limb buds. J Exp Zool. 1989;249:50.CrossRefPubMedGoogle Scholar
  25. 25.
    Rubin L, Saunders JW Jr. Ectodermal-mesodermal interactions in the growth of limb buds in the chick embryo: constancy and temporal limits of the ectodermal induction. Dev Biol. 1972;28:94.CrossRefPubMedGoogle Scholar
  26. 26.
    Tosney K, Landmesser LT. Pattern and specificity of axonal outgrowth following varying degrees of chick limb bud ablation. J Neurosci. 1984;4:2518.PubMedGoogle Scholar
  27. 27.
    Bin L, Yingmao G. Human Embryology. Beijing: People’s Medical Publishing House, 1996.Google Scholar
  28. 28.
    Wei W. Plastic Surgery Science. Hangzhou: Zhejiang Science and Technology Press. 1999:1214-48.Google Scholar
  29. 29.
    Zhongzhi Z. Histology and Embryology. Fifth Edition. Beijing: People’s Medical Publishing House, 2001.Google Scholar
  30. 30.
    Guangxiang H, Wei W. Congenital Hand Anomalies. Beijing, People’s Medical Publishing House, 2004.Google Scholar
  31. 31.
    Pehoski C. Cortical control of skilled movement of the hand. In: Henderson A, Pehoski C, editors. Hand function in the child. St Louis: Moshy-Yearbook; 1995.Google Scholar
  32. 32.
    Erhardt RP. Developmental hand dysfunction: theory, assessment, and treatment. 2nd ed. San Antonio: Therapy Skill Builder; 1994.Google Scholar
  33. 33.
    Exner CE. In-hand manipulation skills. In: Case-Smith J, Pehoski C, editors. Development of hand skills in the child. Bethesda: The American Occupational Therapy Association Inc; 1992. p. 13–33.Google Scholar
  34. 34.
    Kaplan M. Motor learning: implications for occupational therapy and neurodevelopmental treatment. DDSIS Newslett. 1994;17:1–4.Google Scholar
  35. 35.
    Napier JR, Napier PH. Handbook of living primates. New York: Academic Press; 1967.Google Scholar
  36. 36.
    Gebhard AR, Ottenbacher KJ, Lane SJ. Interrater reliability of the Peabody Motor Scales: fine motor scale. Am J Occup Ther. 1994;48:976–81.CrossRefPubMedGoogle Scholar
  37. 37.
    Folio M, Fewell RF. Peabody developmental motor scales. 2d ed. Austin: Pro-Ed; 2000.Google Scholar
  38. 38.
    Flatt AE. The care of congenital hand deformities. 2nd ed. St. Louis: Quality Medical Publishing; 1994.Google Scholar
  39. 39.
    Hu ZJ, Yu XF, Li QH, Zhang AJ, Deng X, Zhang AY. One family investigation and pathogeny research on ectrodactyly, absence of radius side part palm and split foot malformation. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2004;21(5):482–4.PubMedGoogle Scholar
  40. 40.
    Ianakiev P, Kilpatrick MW, Toudjarska I, Basel D, Beighton P, Tsipouras P. Split-hand/split-foot malformation is caused by mutations in the p63 gene on 3q27. Am J Hum Genet. 2000;67(1):59–66.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Sifakis S, Basel D, Ianakiev P, Kilpatrick M, Tsipouras P. Distal limb malformations: underlying mechanisms and clinical associations. Clin Genet. 2001;60(3):165–72.CrossRefPubMedGoogle Scholar
  42. 42.
    Zheng L, Huizhen W, Shijun J. Congenital Congenital. Beijing: People’s Medical Publishing House, 2000:18–9.Google Scholar
  43. 43.
    Rios JJ, Paria N, Burns DK, Israel BA, Cornelia R, Wise CA, Ezaki M. Somatic gain-of-function mutations in PIK3CA in patients with macrodactyly. Hum Mol Genet. 2013;22(3):444–51.CrossRefPubMedGoogle Scholar
  44. 44.
    Krengel S, Fustes-Morales A, Carrasco D, Vázquez M, Durán-McKinster C, Ruiz-Maldonado R. Macrodactyly: report of eight cases and review of the literature. Pediatr Dermatol. 2000;17(4):270–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Al-Qattan MM, Al Abdulkareem I, Al Haidan Y, Al Balwi M. A novel mutation in the SHH long-range regulator (ZRS) is associated with preaxial polydactyly, triphalangeal thumb, and severe radial ray deficiency. Am J Med Genet A. 2012;158A(10):2610–5.CrossRefPubMedGoogle Scholar
  46. 46.
    Faiyaz ul Haque M, Uhlhaas S, Knapp M, et al. Mapping of the gene for X-chromosomal split-hand/split-foot anomaly to Xq26-q26.1. Hum Genet. 1993;91:17–9.CrossRefPubMedGoogle Scholar
  47. 47.
    Celli J, Duijf P, Hamel BC, et al. Heterozygous germline mutations in the p53 homolog p63 are the cause of EEC syndrome. Cell. 1999;99:143–53.CrossRefPubMedGoogle Scholar
  48. 48.
    Wessagowit V, Mellerio JE, Pembroke AC, McGrath JA. Heterozygous germline missense mutation in the p63 gene underlying EEC syndrome. Clin Exp Dermatol. 2000;25:441–3.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. and Zhejiang Science and Technology Publishing House 2017

Authors and Affiliations

  • Jinghong Xu
    • 1
    Email author
  • Jialiang Chen
    • 1
  • Wei Wang
    • 2
  • Bin Wang
    • 2
  • Yijia Yu
    • 1
  • Bo Chen
    • 3
  • Jianmin Yao
    • 4
  1. 1.Department of Plastic SurgeryThe First Affiliated Hospital, Zhejiang UniversityHangzhouChina
  2. 2.Department of Plastic and Reconstructive SurgeryShanghai Ninth People Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
  3. 3.Plastic Surgery Hospital of Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
  4. 4.Hangzhou Plastic Surgery HospitalHangzhouChina

Personalised recommendations