Image-Based Motion and Strain Estimation of the Vessel Wall

  • Spyretta GolematiEmail author
  • Eleni Patelaki
  • Konstantina S. Nikita
Part of the Series in BioEngineering book series (SERBIOENG)


The estimation of vessel wall motion is valuable for characterising vessel status in health and disease. Following the periodic movement of the heart and the resulting blood pressure variations during the cardiac cycle, the vascular wall performs a complex three-dimensional motion. Wall motion can be quantified through the calculation of a number of kinematic parameters, including displacements, velocities, and accelerations, as well as strain, which has gained attention for characterising tissue function. To estimate vascular motion from images, different imaging modalities can be used, including ultrasound, magnetic resonance imaging (MRI) and computed tomography (CT). Among these, ultrasound imaging is the most widely used technique for vascular motion estimation, due to its wide availability, easy use, high temporal resolution, and possibility to access various central and peripheral vessels. Offering lower temporal but higher spatial resolutions than ultrasound, MRI and CT have been used mostly in aortic kinematics. In parallel to the development of sophisticated imaging and analysis methods, which will allow to reveal unexplored aspects of the complex kinematic phenomena of vascular tissue, the systematic application of image-based motion indices to clinical practice is crucial towards improving clinical decision making and ultimately public health.


  1. 1.
    Martini FH, Nath JL, Bartholomew EF (2017) Fundamentals of anatomy and physiology, 11th edn. Pearson, USAGoogle Scholar
  2. 2.
    Wagenseil JE, Mecham RP (2009) Vascular extracellular matrix and arterial mechanics. Physiol Rev 89:957–989Google Scholar
  3. 3.
    Fung YC (1993) Biomechanics—mechanical properties of living tissues, 2nd edn. Springer, New York IncGoogle Scholar
  4. 4.
    Nikita KS (2013) Atherosclerosis: the evolving role of vascular image analysis. Comput Med Imaging Graph 37(1):1–3Google Scholar
  5. 5.
    Greenwald SE (2007) Ageing of the conduit arteries. J Pathol 211(2):157–172Google Scholar
  6. 6.
    Mackenzie IS, Wilkinson IB, Cockroft JR (2002) Assessment of arterial stiffness in clinical practice. Q J Med 95:67–74Google Scholar
  7. 7.
    Sarvazyan A, Hall TJ, Urban MW, Fatemi M, Aglyamov SR, Garra BS (2011) An overview of elastography—an emerging branch of medical imaging. Curr Med Imaging Rev 7(4):255–282Google Scholar
  8. 8.
    Hoskins PR, Kenwright DA (2015) Recent developments in vascular ultrasound technology. Ultrasound 23(3):158–165Google Scholar
  9. 9.
    Gennisson JL, Deffieux T, Fink M, Tanter M (2013) Ultrasound elastography: principles and techniques. Diagn Interv Imaging 94(5):487–495Google Scholar
  10. 10.
    Tanter M, Fink M (2014) Ultrafast imaging in biomedical ultrasound. IEEE Trans Ultrason Ferroelectr Freq Contr 61(1):102–119Google Scholar
  11. 11.
    Golemati S, Gastounioti A, Nikita KS (2016) Ultrasound-image-based cardiovascular tissue motion estimation. IEEE Rev Biomed Eng 9:208–218Google Scholar
  12. 12.
    Wittek A, Karatolios K, Fritzen CP et al (2016) Cyclic three-dimensional wall motion of the human ascending and abdominal aorta characterized by time-resolved three-dimensional ultrasound speckle-tracking. Biomech Model Mechanobiol 15:1375–1388Google Scholar
  13. 13.
    Luo J, Konofagou EE (2011) Imaging of wall motion coupled with blood flow velocity in the heart and vessels in vivo: a feasibility study. Ultrasound Med Biol 37(6):980–995Google Scholar
  14. 14.
    van Disseldorp EM, Petterson NJ, Rutten MC, van de Vosse FN, van Sambeek MR, Lopata RG (2016) Patient specific wall stress analysis and mechanical characterization of abdominal aortic aneurysms using 4D ultrasound. Eur J Vasc Endovasc Surg 52(5):635–642Google Scholar
  15. 15.
    de Korte CL, Carlier SG, Mastik F, Doyley MM, van der Steen AF, Serruys PW, Bom N (2002) Morphological and mechanical information of coronary arteries obtained with intravascular elastography; feasibility study in vivo. Eur Heart J 23(5):405–413Google Scholar
  16. 16.
    Maurice RL, Fromageau J, Brusseau E, Finet G, Rioufol G, Cloutier G (2007) On the potential of the langrangian estimator for endovascular ultrasound elastography: in vivo human coronary artery study. Ultrasound Med Biol 33(8):1199–1205Google Scholar
  17. 17.
    Deleaval F, Bouvier A, Finet G, Cloutier G, Yazdani SK, Le Floc’h S, Clarysse P, Pettigrew RI, Ohayon J (2013) The intravascular ultrasound elasticity-palpography technique revisited: a reliable tool for the in vivo detection of vulnerable coronary atherosclerotic plaques. Ultrasound Med Biol 39(8):1469–1481Google Scholar
  18. 18.
    Tacheau A, Le Floc’h S, Finet G, Doyley MM, Pettigrew RI, Cloutier G, Ohayon J (2016) The imaging modulography technique revisited for high-definition intravascular ultrasound: theoretical framework. Ultrasound Med Biol 42(3):727–741Google Scholar
  19. 19.
    Golemati S, Nikita KS (2018) Carotid artery wall motion and strain analysis using tracking. In: Loizou CP, Pattichis CS, D’houge J (eds) Handbook of speckle filtering and tracking in cardiovascular ultrasound imaging and video. IETGoogle Scholar
  20. 20.
    Golemati S, Sassano A, Lever MJ, Bharath AA, Nicolaides AN (2003) Carotid artery wall motion estimated from B-mode ultrasound using region tracking and block matching. Ultrasound Med Biol 29(3):387–399Google Scholar
  21. 21.
    Cinthio M, Ahlgren AR, Bergkvist J, Jansson T, Persson HW, Lindström K (2006) Longitudinal movements and resulting shear strain of the arterial wall. Am J Physiol Heart Circ Physiol 291(1):H394–H402Google Scholar
  22. 22.
    Zahnd G, Boussel L, Marion A, Durand M, Moulin P, Sérusclat A, Vray D (2011) Measurement of two-dimensional movement parameters of the carotid artery wall for early detection of arteriosclerosis: a preliminary clinical study. Ultrasound Med Biol 37(9):1421–1429Google Scholar
  23. 23.
    Svedlund S, Eklund C, Robertsson P, Lomsky M, Gan LM (2011) Carotid artery longitudinal displacement predicts 1-year cardiovascular outcome in patients with suspected coronary artery disease. Arterioscler Thromb Vasc Biol 31(7):1668–1674Google Scholar
  24. 24.
    Gastounioti A, Golemati S, Stoitsis JS, Nikita KS (2013) Carotid artery wall motion analysis from B-mode ultrasound using adaptive block matching: in silico evaluation and in vivo application. Phys Med Biol 58(24):8647–8661Google Scholar
  25. 25.
    Tat J, Psaromiligkos IN, Daskalopoulou SS (2016) Carotid atherosclerotic plaque alters the direction of longitudinal motion in the artery wall. Ultrasound Med Biol 42(9):2114–2122Google Scholar
  26. 26.
    Dempsey RJ, Varghese T, Jackson DC, Wang X, Meshram NH, Mitchell CC, Hermann BP, Johnson SC, Berman SE, Wilbrand SM (2017) Carotid atherosclerotic plaque instability and cognition determined by ultrasound-measured plaque strain in asymptomatic patients with significant stenosis. J Neurosurg 10:1–9Google Scholar
  27. 27.
    Sisini F, Tessari M, Gadda G, DiDomenico G, Taibi A, Menegatti E, Gambaccini M, Zamboni P (2015) An ultrasonographic technique to assess the jugular venous pulse: a proof of concept. Ultrasound Med Biol 41(5):1334–1341Google Scholar
  28. 28.
    Herment A, Lefort M, Kachenoura N, DeCesare A, Taviani V, Graves MJ, Pellot-Barakat C, Frouin F, Mousseaux E (2011) Automated estimation of aortic strain from steady-state free-precession and phase contrast MR images. Magn Reson Med 65:986–993Google Scholar
  29. 29.
    Franquet A, Avril S, LeRiche R, Badel P, Schneider F, Li Z, Boissier C, Favre J (2013) A new method for the in vivo identification of mechanical properties in arteries from cine MRI images: theoretical framework and validation. IEEE Trans Med Imaging 6:1–16Google Scholar
  30. 30.
    Suever JD, Watson PJ, Eisner RL, Lerakis S, O’Donnell RE, Oshinski JN (2011) Time-resolved analysis of coronary vein motion and cross-sectional area. J Magn Reson Imaging 34(4):811–815Google Scholar
  31. 31.
    Ozturk C, Derbyshire JA, McVeigh ER (2003) Estimating motion from MRI data. Proc IEEE Inst Electr Electron Eng 9(10):1627–1648Google Scholar
  32. 32.
    Manduca A, Oliphant TE, Dresner MA, Mahowald JL, Kruse SA, Amromin E, Felmlee JP, Greenleaf JF, Ehman RL (2001) Magnetic resonance elastography: non-invasive mapping of tissue elasticity. Med Image Anal 5(4):237–254Google Scholar
  33. 33.
    Van der Geest RJ, Reiber JH (1999) Quantification in cardiac MRI. J Magn Reson Imaging 10(5):602–608Google Scholar
  34. 34.
    McVeigh ER (1996) MRI of myocardial function: motion tracking techniques. Magn Reson Imaging 14(2):137–150Google Scholar
  35. 35.
    Aletras AH, Ding S, Balaban RS, Wen H (1999) DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. J Magn Reson 137:247–252Google Scholar
  36. 36.
    Abd-Elmoniem KZ, Sampath S, Osman NF, Prince JL (2007) Real-time monitoring of cardiac regional function using fastHARP MRI and region-of-interest reconstruction. IEEE Trans Biomed Eng 54(9):1650–1656Google Scholar
  37. 37.
    Wedding KL, Draney MT, Herfkens RJ, Zarins CK, Taylor CA, Pelc NJ (2002) Measurement of vessel wall strain using cine phase contrast MRI. J Magn Reson Imaging 15(4):418–428Google Scholar
  38. 38.
    Lin AP, Bennett E, Wisk LE, Gharib M, Fraser SE, Wen H (2008) Circumferential strain in the wall of the common carotid artery: comparing displacement-encoded and cine MRI in volunteers. Magn Reson Med 60(1):8–13Google Scholar
  39. 39.
    Krishnan K, Ge L, Haraldsson H, Hope MD, Saloner DA, Guccione JM, Tseng EE (2015) Ascending thoracic aortic aneurysm wall stress analysis using patient-specific finite element modeling of in vivo magnetic resonance imaging. Interact CardioVasc Thorac Surg 21(4):471–480Google Scholar
  40. 40.
    Xu L, Chen J, Glaser KJ, Yin M, Rossman PJ, Ehman RL (2013) MR elastography of the human abdominal aorta: a preliminary study. J Magn Reson Imaging 38:1549–1553Google Scholar
  41. 41.
    Kolipaka A, Woodrum D, Araoz PA, Ehman RL (2012) MR elastography of the in vivo abdominal aorta: a feasibility study for comparing aortic stiffness between hypertensives and normotensives. J Magn Reson Imaging 35(3):582–586Google Scholar
  42. 42.
    Litmanovich D, Bankier AA, Cantin L, Raptopoulos V, Boiselle PM (2009) CT and MRI in diseases of the aorta. Am J Roentgenol 193(4):928–940Google Scholar
  43. 43.
    Cesare E, Splendiani A, Barile A, Squillaci E, Cesare A, Brunese L, Masciocchi C (2016) CT and MR imaging of the thoracic aorta. Open Med (Wars) 11(1):143–151Google Scholar
  44. 44.
    Lin E, Alessio A (2009) What are the basic concepts of temporal, contrast, and spatial resolution in cardiac CT? J Cardiovasc Comput Tomogr 3(6):403–408Google Scholar
  45. 45.
    Morrison T, Choi G, Zarins CK, Taylor CA (2009) Circumferential and longitudinal cyclic strain of the human thoracic aorta: age-related changes. J Vasc Surg 49:1029–1036Google Scholar
  46. 46.
    Schlicht MS, Khanafer K, Duprey A, Cronin P, Berguer R (2013) Experimental foundation for in vivo measurement of the elasticity of the aorta in computed tomography angiography. Eur J Vasc Endovasc Surg 46:447–452Google Scholar
  47. 47.
    Martin C, Sun W, Primiano C, McKay R, Elefteriades J (2013) Age-dependent ascending aorta mechanics assessed through multiphase CT. Ann Biomed Eng 41:2565–2574Google Scholar
  48. 48.
    Weber TF, Müller T, Biesdorf A, Wörz S, Rengier F, Heye T, Holland-Letz T, Rohr K, Kauczor HU, von Tengg-Kobligk H (2014) True four-dimensional analysis of thoracic aortic displacement and distension using model-based segmentation of computed tomography angiography. Int J Cardiovasc Imaging 30:185–194Google Scholar
  49. 49.
    Lee MK, Holdsworth DW, Fenster A (2000) Dynamic 3D computed tomography: non-invasive method for determination of the aortic dynamic elastic modulus. In: Proceedings of the 22nd annual international conference of the IEEE engineering in medicine and biology societyGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Spyretta Golemati
    • 1
    Email author
  • Eleni Patelaki
    • 2
  • Konstantina S. Nikita
    • 2
  1. 1.Medical SchoolNational Kapodistrian University of AthensAthensGreece
  2. 2.School of Electrical and Computer EngineeringNational Technical University of AthensAthensGreece

Personalised recommendations