Modelling the Electrical Activity of the Heart

  • Sergio AlonsoEmail author
  • Rodrigo Weber dos Santos
Part of the Series in BioEngineering book series (SERBIOENG)


The electrocardiogram signal is a popular measurement of the electrical activity of the whole heart. It reflects the interaction and diversity of the electrical activity of cells from different parts of the heart. Rhythmically each cell changes the value of the transmembrane potential, and this change in the electrical properties of the cell propagates through the tissue producing the coordination of the electrical signal, which triggers the contraction of the whole heart. In this chapter we show the main ingredients for the description of the electrophysiology of a single cell and the different models for the propagation of the electrical signal along cardiac tissue. We discuss the main characteristics of certain arrhythmias and the corresponding patterns of electrical activity obtained in the numerical simulations.



We acknowledge fruitful discussions with professors Blas Echebarria and Markus Bär. This work was partially supported by MINECO of Spain under the Ramon y Cajal program with the grant number RYC-2012-11265, and the Brazilian funding agencies FAPEMIG, CNPq, FINEP and CAPES.


  1. 1.
    Zipes D, Jalife J (2013) Cardiac electrophysiology: from cell to bedside. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Keener JP, Sneyd J (1998) Mathematical physiology. Springer, New YorkzbMATHGoogle Scholar
  3. 3.
    Malmivuo J, Plonsey R (1995) Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press, OxfordCrossRefGoogle Scholar
  4. 4.
    Clayton RH, Bernus O, Cherry EM, Dierckx H, Fenton FH, Mirabella L, Panfilov AV, Sachse FB, Seemann G, Zhang H (2011) Models of cardiac tissue electrophysiology: progress, challenges and open questions. Prog Biophys Mol Biol 104:22–48CrossRefGoogle Scholar
  5. 5.
    Pfeiffer ER, Tangney JR, Omens JH, McCulloch AD (2014) Biomechanics of cardiac electromechanical coupling and mechanoelectric feedback. J Biomech Eng 136(2):021007CrossRefGoogle Scholar
  6. 6.
    Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500CrossRefGoogle Scholar
  7. 7.
    Clerx M, Collins P, de Lange E, Volders PGA (2016) Myokit: a simple interface to cardiac cellular electrophysiology. Prog Biophys Mol Biol 120(1–3):100–114CrossRefGoogle Scholar
  8. 8.
    Qu Z, Hu G, Garfinkel A, Weiss JN (2014) Nonlinear and stochastic dynamics in the heart. Phys Rep 543(2):61–162MathSciNetCrossRefGoogle Scholar
  9. 9.
    Kaese S, Verheule S (2013) Cardiac electrophysiology in mice: a matter of size. Transgenic models of cardiac arrhythmias and sudden death. 103Google Scholar
  10. 10.
    Campos FO, Davenport MH, dos Santos RW, Nygren A, Giles WR (2013) High heart rate in pregnancy is modulated by augmented expression of an ion channel, HCN-2, in pacemaker tissue. Circulation 20:127Google Scholar
  11. 11.
    Vigmond EJ, dos Santos RW, Prassl AJ, Deo M, Plank G (2008) Solvers for the cardiac bidomain equations. Prog Biophys Mol Biol 1:96Google Scholar
  12. 12.
    Trayanova N, Constantino J, Ashihara T, Plank G (2011) Modeling defibrillation of the heart: approaches and insights. IEEE Rev Biomed Eng 4:89–102CrossRefGoogle Scholar
  13. 13.
    dos Santos RW, Kosch O, Steinhoff U, Bauer S, Trahms L, Koch H (2004) MCG to ECG source differences: measurements and a two-dimensional computer model study. J Electrocardiol 1:37Google Scholar
  14. 14.
    Mäntynen V, Konttila T, Stenroos M (2014) Investigations of sensitivity and resolution of ECG and MCG in a realistically shaped thorax model. Phys Med Biol 23:59Google Scholar
  15. 15.
    Roth BJ, Woods MC (1999) The magnetic field associated with a plane wave front propagating through cardiac tissue. IEEE Trans Biomed Eng 11:46Google Scholar
  16. 16.
    dos Santos RW, Koch H (2005) Interpreting biomagnetic fields of planar wave fronts in cardiac muscle. Biophys J 5:88Google Scholar
  17. 17.
    Potse M, Dubé B, Richer J, Vinet A, Gulrajani RM (2006) A comparison of monodomain and bidomain reaction-diffusion models for action potential propagation in the human heart. IEEE Trans Biomed Eng 53(12):2425–2435CrossRefGoogle Scholar
  18. 18.
    Rudy Y, Quan W (1987) A model study of the effects of the discrete cellular structure on electrical propagation in cardiac tissue. Circ Res 61(6):815–823CrossRefGoogle Scholar
  19. 19.
    Fast VG, Kléber AG (1995) Cardiac tissue geometry as a determinant of unidirectional conduction block: assessment of microscopic excitation spread by optical mapping in patterned cell cultures and in a computer model. Cardiovasc Res 29(5):697–707CrossRefGoogle Scholar
  20. 20.
    Cherry EM, Ehrlich JR, Nattel S, Fenton FH (2007) Pulmonary vein reentry—properties and size matter: insights from a computational analysis. Heart Rhythm 4(12):1553–1562CrossRefGoogle Scholar
  21. 21.
    Alonso S, Bär M (2013) Reentry near the percolation threshold in a heterogeneous discrete model for cardiac tissue. Phys Rev Lett 110(15):158101Google Scholar
  22. 22.
    Panfilov AV (2002) Spiral breakup in an array of coupled cells: the role of the intercellular conductance. Phys Rev Lett 88(11):118101Google Scholar
  23. 23.
    de Barros Gouvea B, Weber dos Santos R, Lobosco M, Alonso S (2015) Simulation of ectopic pacemakers in the heart: multiple ectopic beats generated by reentry inside fibrotic regions. BioMed Res Int 2015:713058Google Scholar
  24. 24.
    Costa CM, Silva PAA, dos Santos RW (2016) Mind the gap: a semicontinuum model for discrete electrical propagation in cardiac tissue. IEEE Trans Biomed Eng 4:63Google Scholar
  25. 25.
    Spach MS, Heidlage JF (1995) The stochastic nature of cardiac propagation at a microscopic level: electrical description of myocardial architecture and its application to conduction. Circ Res 76(3):366–380CrossRefGoogle Scholar
  26. 26.
    de Barros Gouvea B, Sachetto Oliveira R, Meira W, Lobosco M, Weber dos Santos R (2012) Simulations of complex and microscopic models of cardiac electrophysiology powered by multi-GPU platforms. Comput Math Methods Med 2012:824569Google Scholar
  27. 27.
    Prudat Y, Kucera JP (2014) Nonlinear behaviour of conduction and block in cardiac tissue with heterogeneous expression of connexin 43. J Mol Cell Cardiol 76:46–54CrossRefGoogle Scholar
  28. 28.
    Hubbard ML, Henriquez CS (2014) A microstructural model of reentry arising from focal breakthrough at sites of source-load mismatch in a central region of slow conduction. Am J Physiol Heart Circ Physiol 306(9):H1341–H1352CrossRefGoogle Scholar
  29. 29.
    Spach MS, Barr RC (2000) Effects of cardiac microstructure on propagating electrical waveforms. Circ Res 86(2):e23–e28CrossRefGoogle Scholar
  30. 30.
    Roberts SF, Stinstra JG, Henriquez CS (2008) Effect of nonuniform interstitial space properties on impulse propagation: a discrete multidomain model. Biophys J 95:3724–3737CrossRefGoogle Scholar
  31. 31.
    Alonso S, Bär M, Echebarria B (2016) Nonlinear physics of electrical wave propagation in the heart: a review. Rep Prog Phys 79(9):096601CrossRefGoogle Scholar
  32. 32.
    Qu Z, Garfinkel A, Weiss JN (2006) Vulnerable window for conduction block in a one-dimensional cable of cardiac cells, 1: single extrasystoles. Biophys J 91:793–804CrossRefGoogle Scholar
  33. 33.
    Qu Z, Garfinkel A, Chen PS, Weiss JN (2000) Mechanisms of discordant alternans and induction of reentry in simulated cardiac tissue. Circulation 102:1664–1670CrossRefGoogle Scholar
  34. 34.
    Karma A (1993) Spiral breakup in model equations of action potential propagation in cardiac tissue. Phys Rev Lett 71:1103MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Alonso S, Bär M, Panfilov AV (2013) Negative tension of scroll wave filaments and turbulence in three-dimensional excitable media and application in cardiac dynamics. Bull Math Biol 75(8):1351–1376MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Fenton F, Karma A (1998) Fiber-rotation-induced vortex turbulence in thick myocardium. Phys Rev Lett 81:481zbMATHCrossRefGoogle Scholar
  37. 37.
    Krishnamurthy A, Villongco CT, Chuang J, Frank LR, Nigam V, Belezzuoli E, Stark P, Krummen DE, Narayan S, Omens JH, McCulloch AD (2013) Patient-specific models of cardiac biomechanics. J Comput Phys 244:4–21CrossRefGoogle Scholar
  38. 38.
    Oliveira BL, Rocha BM, Barra LPS, Toledo EM, Sundnes J, dos Santos Weber R (2013) Effects of deformation on transmural dispersion of repolarization using in silico models of human left ventricular wedge. Int J Numer Methods Biomed Eng 29:1323–1337Google Scholar
  39. 39.
    Nordsletten DA, Niederer SA, Nash MP, Hunter PJ, Smith NP (2011) Coupling multi-physics models to cardiac mechanics. Prog Biophys Mol Biol 104:77–88CrossRefGoogle Scholar
  40. 40.
    Trayanova NA, Rice JJ (2011) Cardiac electromechanical models: from cell to organ. Front Physiol 2:43CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of PhysicsUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Department of Computer ScienceUniversidade Federal de Juiz de ForaJuiz de ForaBrazil

Personalised recommendations