Skip to main content

Matrix-Based Computational Concept Design with Ant Colony Optimization

  • Chapter
  • First Online:
Book cover Matrix-based Product Design and Change Management

Abstract

Engineering design is a special form of problem solving where a set of frequently unclear objectives must be balanced without violating a set of constraints. As the concept generation phase of the engineering design becomes more complex and competitive, it is desirable to produce a large number of potential optimized solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tang DB, Kang YY, Zhu RM (2011) Functional reverse design for secondary innovation. Int J Prod Lifecycle Manag 5(2-3-4):183–201

    Article  Google Scholar 

  2. Albritton MD, McMullen PR (2007) Optimal product design using a colony of virtual ants. Eur J Oper Res 176(1):498–520

    Article  MATH  Google Scholar 

  3. Devanathan S et al (2010) Integration of sustainability into early design through the function impact matrix. J Mech Des 132(8):1–8 (Chapter No. 081004)

    Google Scholar 

  4. Ramanujan D et al (2011) Addressing uncertainties within product redesign for sustainability: a function based framework. In: Proceedings of ASME 2011 IDETC/CIE conference, 28–31 Aug 2011, Washington, DC, USA, pp 1–8 (Chapter No. DETC2011-47137)

    Google Scholar 

  5. Tang DB et al (2010) Product design knowledge management based on design structure matrix. Adv Eng Inf 24(2):159–166

    Article  MathSciNet  Google Scholar 

  6. Wang Z, Kannan PK, Azarm S (2011) Customer-driven optimal design for convergence products. J Mech Des 133(10):1–13 (Chapter No. 101010)

    Article  Google Scholar 

  7. Kamyab A, Lewis K E (2008) Customizing products using functional component matrices. In: Proceedings of ASME 2008 IDETC/CIE conference, 3–6 Aug 2008, Brooklyn, New York, USA, pp 1–11 (Chapter No. DETC2008-50005)

    Google Scholar 

  8. Akasaka F et al (2012) Development of a knowledge-based design support system for product-service systems. Comput Ind 63(4):309–318

    Article  Google Scholar 

  9. Tang DB et al (2010) Analysis of engineering change impacts based on design structure matrix. J Mech Eng 46(1):154–161

    Article  Google Scholar 

  10. Bryant C et al (2005) A computational technique for concept generation. In: Proceedings of ASME 2005 IDETC/CIE conference, 24–28 Sept 2005, Long Beach, CA, pp 1–10 (Chapter No. DETC2005-85323)

    Google Scholar 

  11. Luh DB, Ko YT, Ma DH (2011) A structural matrix-based modeling for designing product variety. J Eng Des 22(1):1–29

    Article  Google Scholar 

  12. Pahl G, Beitz W (1984) Engineering design. The Design Council, London

    Google Scholar 

  13. Stone R, Wood K (2000) Development of a functional basis for design. J Mech Des 122(4):359–370

    Article  Google Scholar 

  14. Hirtz J et al (2002) A functional basis for engineering design: reconciling and evolving previous efforts. Res Eng Des 13(2):65–82

    Article  Google Scholar 

  15. Ward AC (1989) A theory of quantitative inference for artifact sets, applied to a mechanical design compiler. Thesis (PhD), Massachusetts Institute of Technology

    Google Scholar 

  16. Hyman B (1998) Fundamentals of engineering design. Prenice-Hall, Saddle River, NJ

    Google Scholar 

  17. Tamhankar M, Campbell M (2007) An intelligent and efficient tree search algorithm for computer-aided component selection. In: Proceedings of ASME 2007 IDETC/CIE conference, 4–7 Sept 2007, Las Vegas, NV, pp 1–10 (Chapter No. DETC2007-34587)

    Google Scholar 

  18. Kurtoglu T et al (2005) Capturing empirically derived design knowledge for creating conceptual design configurations. In: Proceedings of ASME 2005 IDETC/CIE conference, 24–28 Sept 2005, Long Beach, CA, pp 1–9 (Chapter No. DETC2005-84405)

    Google Scholar 

  19. Fomin P, Sarkani S, Mazzuchi T (2010) Growing the house of quality. Syst Res Forum 4(2):137–149

    Article  Google Scholar 

  20. Kusiak A (1999) Engineering design: products, processes and systems. Academic Press, Orlando, FL

    Google Scholar 

  21. Avnet MS, Weigel AL (2010) An application of the design structure matrix to integrated concurrent engineering. Acta Astronaut 66(5–6):937–949

    Article  Google Scholar 

  22. Eppinger S et al (1994) A model-based method for organizing tasks in product development. Res Eng Des 6(1):1–13

    Article  Google Scholar 

  23. Helmer R, Yassine A, Meier C (2010) Systematic module and interface definition using component design structure matrix. J Eng Des 21(6):647–675

    Article  Google Scholar 

  24. Tang DB, Zhang GJ, Dai S (2009) Design as integration of axiomatic design and design structure matrix. Robot Comput Integr Manuf 25(3):610–619

    Article  Google Scholar 

  25. Tilstra AH, Seepersad CC, Wood KL (2009) Analysis of product flexibility for future evolution based on design guidelines and a high-definition design structure matrix. In: Proceedings of ASME 2009 IDETC/CIE conference, 30 Aug–2 Sept 2009, San Diego, California, pp 1–14 (Chapter No. DETC2009-87118)

    Google Scholar 

  26. Seuring S (2009) The product-relationship-matrix as framework for strategic supply chain design based on operations theory. Int J Prod Econ 120(1):221–232

    Article  Google Scholar 

  27. Suh N (2001) Axiomatic design advances and applications. Oxford University Press, New York

    Google Scholar 

  28. Tiwari S, Summers J, Fadel G (2007) A genetic algorithm based procedure for extracting optimal solutions from a morphological chart. In: Proceedings of ASME 2007 IDETC/CIE conference, 4–7 Sept 2007, Las Vegas, NV, pp 1–10 (Chapter No. DETC2007-35497)

    Google Scholar 

  29. Bryant C et al (2006) A validation study of an automated concept generator design tool. In: Proceedings of ASME 2006 IDETC/CIE conference, 10–13 Sept 2006, Philadelphia, PA, pp 1–12 (Chapter No. DETC2006-99489)

    Google Scholar 

  30. Lai X, Xie M, Tan KC (2006) QFD optimization using linear physical programming. Eng Optim 38(5):593–607

    Article  Google Scholar 

  31. Braun RD (1996) Collaborative optimization: an architecture for large-scale distributed design. Thesis (Ph.D), Stanford University

    Google Scholar 

  32. Michelena N et al (1999) Hierarchical overlapping coordination for large-scale optimization by decomposition. AIAA J 37(7):890–906

    Article  Google Scholar 

  33. Shi XM et al (2010) Time evaluation of design mission based on design structure matrix. In: Proceedings of international conference on information networking and automation (ICINA), vol 1, 18–19 Oct 2010, pp 470–474

    Google Scholar 

  34. Sobieszczanski-Sobieski J, Haftka RT (1997) Multidisciplinary aerospace design optimization: survey of recent developments. Struct Optim 14(1):1–23

    Article  Google Scholar 

  35. Thielman J, Ge P (2006) Applying axiomatic design theory to the evaluation and optimization of large-scale engineering systems. J Eng Des 17(1):1–16

    Article  Google Scholar 

  36. Anand A, Wani MF (2010) Product life-cycle modeling and evaluation at the conceptual design stage: a digraph and matrix approach. J Mech Des 132(9):1–9 (Chapter No. 091010)

    Article  Google Scholar 

  37. Wagner MO et al (2003) Ergonomic modeling and optimization of the keyboard arrangement with an ant colony algorithm. J Eng Des 14(2):187–208

    Article  Google Scholar 

  38. Ayağ Z (2005) A fuzzy AHP-based simulation approach to concept evaluation in a NPD environment. IIE Trans 37(9):827–842

    Article  Google Scholar 

  39. Vanegas LV, Labib AW (2005) Fuzzy approaches to evaluation in engineering design. J Mech Des 127(1):24–33

    Article  Google Scholar 

  40. Huang HZ, Bo RF, Chen W (2006) An integrated computational intelligence approach to product concept generation and evaluation. Mech Mach Theory 41(5):567–583

    Article  MATH  Google Scholar 

  41. Wyatt DF et al (2012) Supporting product architecture design using computational design synthesis with network structure constraints. Res Eng Des 23(1):17–52

    Article  Google Scholar 

  42. Kurfman M et al (2001) Functional modeling experimental studies. In: Proceedings of ASME 2001 DETC conference, 9–12 Sept 2001, Pittsburgh, PA, pp 1–13 (Chapter No. DETC2001/DTM-21709)

    Google Scholar 

  43. Stone R et al (2006) Design repository [online]. The Design Engineering Lab at Oregon State University, Corvallis, OR. Available from: http://function2.mime.oregonstate.edu:8080/view/index.jsp. Accessed 23 Nov 2012

  44. Ölvander J, Lundén B, Gavel H (2009) A computerized optimization framework for the morphological matrix applied to aircraft conceptual design. Comput Aided Des 41(3):187–196

    Article  Google Scholar 

  45. Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the travelling salesman problem. IEEE Trans Evol Comput 1(1):53–66

    Article  Google Scholar 

  46. van der Zwaan S, Marques C (1999) Ant colony optimization for job shop scheduling. In: Proceedings of the 3rd workshop on genetic algorithms and artificial life (GAAL99), March, Lisbon, Portugal, pp 1–8

    Google Scholar 

  47. Minseok S, José AV (2008) Ant colony optimization for job shop scheduling. In: IIE annual conference and expo, Vancouver, BC, pp 1433–1438

    Google Scholar 

  48. Malmqvist J, Axelsson R, Johansson M (1996) A comparative analysis of the theory of inventive problem solving and the systematic approach of Pahl and Beitz. In: Proceedings of ASME 1996 DETC conference, 18–22 Aug 1996, Irvine, CA, pp 1–11 (Chapter No. DETC/DTM-1529)

    Google Scholar 

  49. Pailhès J et al (2011) Energy based functional decomposition in preliminary design. J Mech Des 133(5):1–10 (Chapter No. 051011)

    Article  Google Scholar 

  50. Fox B, Xiang W, Lee HP (2007) Industrial applications of the ant colony optimization algorithm. Int J Adv Manuf Technol 31(7–8):805–814

    Google Scholar 

  51. Zhou R, Nee AYC, Lee HP (2009) Performance of an ant colony optimization algorithm in dynamic job shop scheduling problems. Int J Prod Res 47(11):2903–2920

    Article  MATH  Google Scholar 

  52. Selvi V, Umarani D (2010) Comparative analysis of ant colony and particle swarm optimization techniques. Int J Comput Appl 5(4):1–6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Tang, D., Yin, L., Ullah, I. (2018). Matrix-Based Computational Concept Design with Ant Colony Optimization. In: Matrix-based Product Design and Change Management. Springer, Singapore. https://doi.org/10.1007/978-981-10-5077-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5077-0_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5076-3

  • Online ISBN: 978-981-10-5077-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics