Advertisement

Spectral Degeneracies in the Asymmetric Quantum Rabi Model

  • Cid Reyes-BustosEmail author
  • Masato Wakayama
Chapter
Part of the Mathematics for Industry book series (MFI, volume 29)

Abstract

The aim of this article is to investigate certain family of (so-called constraint) polynomials which determine the quasi-exact spectrum of the asymmetric quantum Rabi model. The quantum Rabi model appears ubiquitously in various quantum systems and its potential applications include quantum computing and quantum cryptography. In (Wakayama, Symmetry of Asymmetric Quantum Rabi Models) [30], using the representation theory of the Lie algebra \(\mathfrak {sl}_2\), we presented a picture of the asymmetric quantum Rabi model equivalent to the one drawn by confluent Heun ordinary differential equations. Using this description, we proved the existence of spectral degeneracies (level crossings in the spectral graph) of the asymmetric quantum Rabi model when the symmetry-breaking parameter \(\varepsilon \) equals \(\frac{1}{2}\) by studying the constraint polynomials, and conjectured a formula that ensures the presence of level crossings for general \(\varepsilon \in \frac{1}{2}\mathbb {Z}\). These results on level crossings generalize a result on the degenerate spectrum, given first by Kuś in 1985 for the (symmetric) quantum Rabi model. It was demonstrated numerically by Li and Batchelor in 2015, investigating an earlier empirical observation by (Braak, Phys. Rev. Lett. 107, 100401–100404, 2011) [3]. In this paper, although the proof of the conjecture has not been obtained, we deepen this conjecture and give insights together with new formulas for the target constraint polynomials.

Keywords

Quantum rabi models Degenerate eigenvalues Level crossings Exceptional spectrum Juddian solutions quasi-exact solutions Constraint polynomials confluent Heun differential equations Orthogonal polynomials discrete series Stirling numbers of the first kind Eulerian numbers 

2010 Mathematics Subject Classification:

Primary 34L40 Secondary 81Q10 34M05 81S05. 

Notes

Acknowledgements

The authors wish to thank Daniel Braak for many valuable comments and suggestions particularly from the physics side. This work is partially supported by Grand-in-Aid for Scientific Research (C) No. 16K05063 of JSPS, Japan. The first author was supported during the duration of the research by the Japanese Government (MONBUKAGAKUSHO: MEXT) scholarship.

References

  1. 1.
    V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform part I. Commun. Pure Appl. Math. 14, 187–214 (1961)CrossRefzbMATHGoogle Scholar
  2. 2.
    M.T. Batchelor, Z.-M. Li, H.-Q. Zhou, Energy landscape and conical intersection points of the driven Rabi model. J. Phys. A Math. Theor. 49, 01LT01 (6pp) (2015)Google Scholar
  3. 3.
    D. Braak, Integrability of the Rabi model. Phys. Rev. Lett. 107, 100401–100404 (2011)CrossRefGoogle Scholar
  4. 4.
    D. Braak, Continued fractions and the Rabi model. J. Phys. A Math. Theor. 46, 175301 (10pp) (2013)Google Scholar
  5. 5.
    D. Braak, A generalized \(G\)-function for the quantum Rabi model. Ann. Phys. 525(3), L23–L28 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    D. Braak, Solution of the Dicke model for \(N=3\). J. Phys. B At. Mol. Opt. Phys. 46, 224007 (2013)Google Scholar
  7. 7.
    D. Braak, Analytical solutions of basic models in quantum optics, in Applications + Practical Conceptualization + Mathematics = fruitful Innovation, Proceedings of the Forum of Mathematics for Industry 2014, ed. by R. Anderssen, et al., vol. 11 (Mathematics for Industry Springer, Heidelberg, 2016), pp. 75–92Google Scholar
  8. 8.
    D. Braak, Q.H. Chen, M.T. Batchelor, E. Solano, Semi-classical and quantum Rabi models: in celebration of 80 years. J. Phys. A Math. Theor. 49, 300301 (4pp) (2016)Google Scholar
  9. 9.
    T.S. Chihara, An Introduction to Orthogonal Polynomials (Gordon and Breach, London, 1978)zbMATHGoogle Scholar
  10. 10.
    R.L. Graham, D.E. Knuth, O. Patashhnik, Concrete Mathematics: A Foundation for Computer Science, 2nd edn. (Addison-Wesley, Longman, 1994)zbMATHGoogle Scholar
  11. 11.
    S. Haroche, J.M. Raimond, Exploring the Quantum. Atoms, Cavities and Photons (Oxford University Press, Oxford, 2008)Google Scholar
  12. 12.
    M. Hirokawa, The Dicke-type crossing among eigenvalues of differential operators in a class of non-commutative oscillators. Indiana Univ. Math. J. 58, 1493–1536 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    M. Hirokawa, F. Hiroshima, Absence of energy level crossing for the ground state energy of the Rabi model. Commun. Stoch. Anal. 8, 551–560 (2014)MathSciNetGoogle Scholar
  14. 14.
    F. Hiroshima, I. Sasaki, Spectral analysis of non-commutative harmonic oscillators: the lowest eigenvalue and no crossing. J. Math. Anal. Appl. 105, 595–609 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    E.T. Jaynes, F.W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963)CrossRefGoogle Scholar
  16. 16.
    B.R. Judd, Exact solutions to a class of Jahn-Teller systems. J. Phys. C Solid State Phys. 12, 1685 (1979)CrossRefGoogle Scholar
  17. 17.
    S. Khrushchev, Orthogonal Polynomials and Continued Fractions, From Euler’s Point of View (Cambridge University Press, Cambridge, 2008)CrossRefzbMATHGoogle Scholar
  18. 18.
    M. Kuś, On the spectrum of a two-level system. J. Math. Phys. 26, 2792–2795 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Z.-M. Li, M.T. Batchelor, Algebraic equations for the exceptional eigenspectrum of the generalized Rabi model. J. Phys. A: Math. Theor. 48, 454005 (13pp) (2015)Google Scholar
  20. 20.
    Z.-M. Li, M.T. Batchelor, Addendum to Algebraic equations for the exceptional eigenspectrum of the generalized Rabi model. J. Phys. A Math. Theor. 49, 369401 (5pp) (2016)Google Scholar
  21. 21.
    S. Lang, \({SL_{2}}({\mathbb{R}})\) (Addison-Wesley, Reading, 1975)Google Scholar
  22. 22.
    A.J. Maciejewski, M. Przybylska, T. Stachowiak, Full spectrum of the Rabi model. Phys. Lett. A 378, 16–20 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    T. Niemczyk et al., Beyond the Jaynes-Cummings model: circuit QED in the ultrastrong coupling regime. Nat. Phys. 6, 772–776 (2010)CrossRefGoogle Scholar
  24. 24.
    A. Ronveaux (eds.), Heun’s Differential Equations (Oxford University Press, Oxford, 1995)Google Scholar
  25. 25.
    E. Solano, Viewpoint: the dialogue between quantum light and matter. Physics 4, 68–72 (2011)CrossRefGoogle Scholar
  26. 26.
    S. Sugiyama, Spectral zeta functions for the quantum Rabi models. Nagoya Math. J. (2016). doi: 10.1017/nmj.2016.62, 1-47 Google Scholar
  27. 27.
    A.V. Turbiner, Quasi-exactly-solvable problems and sl(2) algebra. Commun. Math. Phys. 118, 467–474 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    M. Wakayama, Remarks on quantum interaction models by Lie theory and modular forms via non-commutative harmonic oscillators, in Mathematical Approach to Research Problems of Science and Technology – Theoretical Basis and Developments in Mathematical Modelling ed. by R. Nishii, et al., Mathematics for Industry, vol. 5 (Springer, Berlin, 2014), pp. 17–34Google Scholar
  29. 29.
    M. Wakayama, Equivalence between the eigenvalue problem of non-commutative harmonic oscillators and existence of holomorphic solutions of Heun differential equations, eigenstates degeneration and the Rabi model. Int. Math. Res. Notices [rnv145 (2015)], 759–794 (2016)Google Scholar
  30. 30.
    M. Wakayama, Symmetry of Asymmetric Quantum Rabi Models. J. Phys. A: Math. Theor. 50, 174001 (22pp) (2017)Google Scholar
  31. 31.
    M. Wakayama, T. Yamasaki, The quantum Rabi model and Lie algebra representations of sl\(_2\). J. Phys. A Math. Theor. 47, 335203 (17pp) (2014)Google Scholar
  32. 32.
    Q.-T. Xie, H.-H. Zhong, M.T. Batchelor, C.-H. Lee, The Quantum Rabi Model: Solution and Dynamics, arXiv:1609.00434

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Graduate School of MathematicsKyushu UniversityNishi-ku, FukuokaJapan
  2. 2.Institute of Mathematics for IndustryKyushu UniversityNishi-ku, FukuokaJapan

Personalised recommendations