Efficient Algorithms for Isogeny Sequences and Their Cryptographic Applications

  • Katsuyuki TakashimaEmail author
Part of the Mathematics for Industry book series (MFI, volume 29)


We summarize efficient isogeny sequence computations on elliptic and genus 2 Jacobians. For cryptographic purposes, sequences of low-degree isogenies are important. Then we focus on sequences of 2- and 3-isogenies on elliptic curves and (2, 2)- and (3, 3)-isogenies on genus 2 Jacobians. Our aim is to explicitly describe the low-degree isogeny sequence computations and improve them for cryptographic applications such as post-quantum cryptosystems and random self-reducibility of discrete logarithm problem (DLP).


Isogeny Expander graph Post-quantum cryptography Random self-reducibility of dlp 



The author would like to thank Kazuto Matsuo for his valuable comments on genus 2 division polynomials given in Sect. 4.3.


  1. 1.
    R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, C. Leonardi, Key compression for isogeny-based cryptosystems. AsiaPKC 2016, 1–10 (2016)Google Scholar
  2. 2.
    R. Azarderakhsh, B. Koziel, A. Jalali, M.M. Kermani, D. Jao, NEON-SIDH: efficient implementation of supersingular isogeny Diffie-Hellman key-exchange protocol on ARM. IACR Cryptol. ePrint Archive 2016, 669 (2016). (To appear in CANS 2016)Google Scholar
  3. 3.
    J. Biasse, D. Jao, A. Sankar, A quantum algorithm for computing isogenies between supersingular elliptic curves. INDOCRYPT 2014, 428–442 (2014)MathSciNetzbMATHGoogle Scholar
  4. 4.
    J.W. Bos, S. Friedberger, Fast arithmetic modulo \(2^x p^y \pm 1\). IACR Cryptol. ePrint Arch. 2016, 986 (2016)Google Scholar
  5. 5.
    J.B. Bost, J.F. Mestre, Moyenne arithmético-géométrique et périodes des courbes de genre 1 et 2. Gaz. Math. Soc. France 38, 36–64 (1988)zbMATHGoogle Scholar
  6. 6.
    E.H. Brooks, D. Jetchev, B. Wesolowski, Isogeny graphs of ordinary abelian varieties. IACR Cryptol. ePrint Arch. 2016, 947 (2016)Google Scholar
  7. 7.
    D. Charles, E. Goren, K. Lauter, Families of Ramanujan graphs and quaternion algebras. in Groups and Symmetries: From Neolithic Scots to John McKay (2009), pp. 53–80Google Scholar
  8. 8.
    D. Charles, K. Lauter, E. Goren, Cryptographic hash functions from expander graphs. J. Crypt. 22(1), 93–113 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    A. Childs, D. Jao, V. Soukharev, Constructing elliptic curve isogenies in quantum subexponential time. J. Math. Crypt. 8(1), 1–29 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    R. Cosset, D. Robert, Computing \((\ell,\ell )\)-isogenies in polynomial time on jacobians of genus 2 curves. Math. Comput. 84, 1953–1975 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    C. Costello, P. Longa, Four\({\mathbb{q}}\): Four-dimensional decompositions on a \({\mathbb{q}}\)-curve over the mersenne prime, in ASIACRYPT 2015, Part I (2015), pp. 214–235Google Scholar
  12. 12.
    C. Costello, P. Longa, M. Naehrig, Efficient algorithms for supersingular isogeny Diffie-Hellman, in CRYPTO 2016, Part I (2016), pp. 572–601Google Scholar
  13. 13.
    L. De Feo, D. Jao, J. Plût, Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)MathSciNetzbMATHGoogle Scholar
  14. 14.
    C. Delfs, S.D. Galbraith, Computing isogenies between supersingular elliptic curves over \(\mathbb{F}_p\). Des. Codes Cryptogr. 78(2), 425–440 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    I. Dolgachev, D. Lehavi, On isogenous principally polarized abelian surfaces, in Curves and Abelian Varieties, Contemporary Mathematics, vol. 465 (2008), pp. 51–69Google Scholar
  16. 16.
    S. Galbraith, Mathematics of Public Key Cryptography (Cambridge University Press, Cambridge, 2012)CrossRefzbMATHGoogle Scholar
  17. 17.
    S.D. Galbraith, C. Petit, B. Shani, Y.B Ti, On the security of supersingular isogeny cryptosystems, in ASIACRYPT 2016, Part I (2016), pp. 63–91Google Scholar
  18. 18.
    S.D. Galbraith, C. Petit, J. Silva, Signature schemes based on supersingular isogeny problems. IACR Cryptol. ePrint Arch. 2016, 1154 (2016)Google Scholar
  19. 19.
    P. Gaudry, É. Schost, Construction of secure random curves of genus 2 over prime fields. EUROCRYPT 2004, 239–256 (2004)MathSciNetzbMATHGoogle Scholar
  20. 20.
    P. Gaudry, É. Schost, Genus 2 point counting over prime fields. J. Symb. Comput. 47(4), 368–400 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    D. Jao, S.D. Miller, R. Venkatesan, Expander graphs based on GRH with an application to elliptic curve cryptography. J. Number Theory 129, 1491–1504 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    D. Jetchev, B. Wesolowski, On graphs of isogenies of principally polarizable abelian surfaces and the discrete logarithm problem, in CoRR (2015),
  23. 23.
    D. Kohel, Endomorphism rings of elliptic curves over finite fields. Ph.D. thesis, University of California at Berkeley (1996)Google Scholar
  24. 24.
    B. Koziel, R. Azarderakhsh, S.H.F. Langroudi, M.M. Kermani, Post-quantum cryptography on FPGA based on isogenies on elliptic curves. IACR Cryptol. ePrint Arch. 2016, 672 (2016). (To appear in IEEE Transactions on Circuits and Systems (TCAS-I))Google Scholar
  25. 25.
    M. Krebs, A. Shaheen, Expander Families and Cayley Graphs: A Beginner’s Guide (Oxford University Press, Oxford, 2011)zbMATHGoogle Scholar
  26. 26.
    D. Lubicz, D. Robert, Computing isogenies between abelian varieties. Compos. Math. 148, 1483–1515 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    A. Lubotzky, B. Weiss, Groups and expanders, in Expanding Graphs, Proceedings of a DIMACS Workshop, vol. 1992 (1992), pp. 95–110Google Scholar
  28. 28.
    D. Moody, D. Shumow, Analogues of Vélu’s formulas for isogenies on alternate models of elliptic curves. Math. Comput. 85, 1929–1951 (2016)CrossRefzbMATHGoogle Scholar
  29. 29.
    A. Pizer, Ramanujan graphs, in Computational Perspectives on Number Theory (American Mathematical Society, 1998), pp. 159–178Google Scholar
  30. 30.
    A. Rostovtsev, A. Stolbunov, Public-key cryptosystem based on isogenies. IACR Cryptol. ePrint Arch. 2006, 145 (2006),
  31. 31.
    J. Silverman, The Arithmetic of Elliptic Curves, GTM, vol. 106, 2nd edn. (Springer, Berlin, 2009)Google Scholar
  32. 32.
    B. Smith, Explicit endomorphisms and correspondences. Ph.D. thesis, The University of Sydney (2005)Google Scholar
  33. 33.
    B. Smith, Computing low-degree isogenies in genus 2 with the Dolgachev-Lehavi method. Arith. Geom. Coding Theory Contemp. Math. 574, 159–170 (2012)MathSciNetzbMATHGoogle Scholar
  34. 34.
    A. Sutherland, Identifying supersingular elliptic curves. LMS J. Comput. Math. 15, 317–325 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    A.V. Sutherland, Isogeny volcanoes, in Algorithmic Number Theory 10th International Symposium (ANTS X), Open Book Series, vol. 1 (MSP, 2013), pp. 507–530Google Scholar
  36. 36.
    H. Tachibana, K. Takashima, T. Takagi, Constructing an efficient hash function from 3-isogenies. To appear in JSIAM Letters (2016)Google Scholar
  37. 37.
    K. Takashima, R. Yoshida, An algorithm for computing a sequence of Richelot isogenies. Bull. Korean Math. Soc. 46(4), 789–802 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    J. Vélu, Isogénies entre courbes elliptiques. C.R. Acad. Sc. Paris, Séries A. 273, 238–241 (1971)Google Scholar
  39. 39.
    R. Yoshida, K. Takashima, Computing a sequence of 2-isogenies on supersingular elliptic curves. IEICE Trans. Fundam. 96-A(1), 158–165 (2013)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Mitsubishi ElectricKamakuraJapan

Personalised recommendations