Skip to main content

Efficient Algorithms for Isogeny Sequences and Their Cryptographic Applications

  • Chapter
  • First Online:
Mathematical Modelling for Next-Generation Cryptography

Part of the book series: Mathematics for Industry ((MFI,volume 29))

Abstract

We summarize efficient isogeny sequence computations on elliptic and genus 2 Jacobians. For cryptographic purposes, sequences of low-degree isogenies are important. Then we focus on sequences of 2- and 3-isogenies on elliptic curves and (2, 2)- and (3, 3)-isogenies on genus 2 Jacobians. Our aim is to explicitly describe the low-degree isogeny sequence computations and improve them for cryptographic applications such as post-quantum cryptosystems and random self-reducibility of discrete logarithm problem (DLP).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, C. Leonardi, Key compression for isogeny-based cryptosystems. AsiaPKC 2016, 1–10 (2016)

    Google Scholar 

  2. R. Azarderakhsh, B. Koziel, A. Jalali, M.M. Kermani, D. Jao, NEON-SIDH: efficient implementation of supersingular isogeny Diffie-Hellman key-exchange protocol on ARM. IACR Cryptol. ePrint Archive 2016, 669 (2016). (To appear in CANS 2016)

    Google Scholar 

  3. J. Biasse, D. Jao, A. Sankar, A quantum algorithm for computing isogenies between supersingular elliptic curves. INDOCRYPT 2014, 428–442 (2014)

    MathSciNet  MATH  Google Scholar 

  4. J.W. Bos, S. Friedberger, Fast arithmetic modulo \(2^x p^y \pm 1\). IACR Cryptol. ePrint Arch. 2016, 986 (2016)

    Google Scholar 

  5. J.B. Bost, J.F. Mestre, Moyenne arithmético-géométrique et périodes des courbes de genre 1 et 2. Gaz. Math. Soc. France 38, 36–64 (1988)

    MATH  Google Scholar 

  6. E.H. Brooks, D. Jetchev, B. Wesolowski, Isogeny graphs of ordinary abelian varieties. IACR Cryptol. ePrint Arch. 2016, 947 (2016)

    Google Scholar 

  7. D. Charles, E. Goren, K. Lauter, Families of Ramanujan graphs and quaternion algebras. in Groups and Symmetries: From Neolithic Scots to John McKay (2009), pp. 53–80

    Google Scholar 

  8. D. Charles, K. Lauter, E. Goren, Cryptographic hash functions from expander graphs. J. Crypt. 22(1), 93–113 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Childs, D. Jao, V. Soukharev, Constructing elliptic curve isogenies in quantum subexponential time. J. Math. Crypt. 8(1), 1–29 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Cosset, D. Robert, Computing \((\ell,\ell )\)-isogenies in polynomial time on jacobians of genus 2 curves. Math. Comput. 84, 1953–1975 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Costello, P. Longa, Four\({\mathbb{q}}\): Four-dimensional decompositions on a \({\mathbb{q}}\)-curve over the mersenne prime, in ASIACRYPT 2015, Part I (2015), pp. 214–235

    Google Scholar 

  12. C. Costello, P. Longa, M. Naehrig, Efficient algorithms for supersingular isogeny Diffie-Hellman, in CRYPTO 2016, Part I (2016), pp. 572–601

    Google Scholar 

  13. L. De Feo, D. Jao, J. Plût, Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. J. Math. Cryptol. 8(3), 209–247 (2014)

    MathSciNet  MATH  Google Scholar 

  14. C. Delfs, S.D. Galbraith, Computing isogenies between supersingular elliptic curves over \(\mathbb{F}_p\). Des. Codes Cryptogr. 78(2), 425–440 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. I. Dolgachev, D. Lehavi, On isogenous principally polarized abelian surfaces, in Curves and Abelian Varieties, Contemporary Mathematics, vol. 465 (2008), pp. 51–69

    Google Scholar 

  16. S. Galbraith, Mathematics of Public Key Cryptography (Cambridge University Press, Cambridge, 2012)

    Book  MATH  Google Scholar 

  17. S.D. Galbraith, C. Petit, B. Shani, Y.B Ti, On the security of supersingular isogeny cryptosystems, in ASIACRYPT 2016, Part I (2016), pp. 63–91

    Google Scholar 

  18. S.D. Galbraith, C. Petit, J. Silva, Signature schemes based on supersingular isogeny problems. IACR Cryptol. ePrint Arch. 2016, 1154 (2016)

    Google Scholar 

  19. P. Gaudry, É. Schost, Construction of secure random curves of genus 2 over prime fields. EUROCRYPT 2004, 239–256 (2004)

    MathSciNet  MATH  Google Scholar 

  20. P. Gaudry, É. Schost, Genus 2 point counting over prime fields. J. Symb. Comput. 47(4), 368–400 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Jao, S.D. Miller, R. Venkatesan, Expander graphs based on GRH with an application to elliptic curve cryptography. J. Number Theory 129, 1491–1504 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Jetchev, B. Wesolowski, On graphs of isogenies of principally polarizable abelian surfaces and the discrete logarithm problem, in CoRR (2015), https://arxiv.org/abs/1506.00522

  23. D. Kohel, Endomorphism rings of elliptic curves over finite fields. Ph.D. thesis, University of California at Berkeley (1996)

    Google Scholar 

  24. B. Koziel, R. Azarderakhsh, S.H.F. Langroudi, M.M. Kermani, Post-quantum cryptography on FPGA based on isogenies on elliptic curves. IACR Cryptol. ePrint Arch. 2016, 672 (2016). (To appear in IEEE Transactions on Circuits and Systems (TCAS-I))

    Google Scholar 

  25. M. Krebs, A. Shaheen, Expander Families and Cayley Graphs: A Beginner’s Guide (Oxford University Press, Oxford, 2011)

    MATH  Google Scholar 

  26. D. Lubicz, D. Robert, Computing isogenies between abelian varieties. Compos. Math. 148, 1483–1515 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Lubotzky, B. Weiss, Groups and expanders, in Expanding Graphs, Proceedings of a DIMACS Workshop, vol. 1992 (1992), pp. 95–110

    Google Scholar 

  28. D. Moody, D. Shumow, Analogues of Vélu’s formulas for isogenies on alternate models of elliptic curves. Math. Comput. 85, 1929–1951 (2016)

    Article  MATH  Google Scholar 

  29. A. Pizer, Ramanujan graphs, in Computational Perspectives on Number Theory (American Mathematical Society, 1998), pp. 159–178

    Google Scholar 

  30. A. Rostovtsev, A. Stolbunov, Public-key cryptosystem based on isogenies. IACR Cryptol. ePrint Arch. 2006, 145 (2006), http://eprint.iacr.org/2006/145

  31. J. Silverman, The Arithmetic of Elliptic Curves, GTM, vol. 106, 2nd edn. (Springer, Berlin, 2009)

    Google Scholar 

  32. B. Smith, Explicit endomorphisms and correspondences. Ph.D. thesis, The University of Sydney (2005)

    Google Scholar 

  33. B. Smith, Computing low-degree isogenies in genus 2 with the Dolgachev-Lehavi method. Arith. Geom. Coding Theory Contemp. Math. 574, 159–170 (2012)

    MathSciNet  MATH  Google Scholar 

  34. A. Sutherland, Identifying supersingular elliptic curves. LMS J. Comput. Math. 15, 317–325 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. A.V. Sutherland, Isogeny volcanoes, in Algorithmic Number Theory 10th International Symposium (ANTS X), Open Book Series, vol. 1 (MSP, 2013), pp. 507–530

    Google Scholar 

  36. H. Tachibana, K. Takashima, T. Takagi, Constructing an efficient hash function from 3-isogenies. To appear in JSIAM Letters (2016)

    Google Scholar 

  37. K. Takashima, R. Yoshida, An algorithm for computing a sequence of Richelot isogenies. Bull. Korean Math. Soc. 46(4), 789–802 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Vélu, Isogénies entre courbes elliptiques. C.R. Acad. Sc. Paris, Séries A. 273, 238–241 (1971)

    Google Scholar 

  39. R. Yoshida, K. Takashima, Computing a sequence of 2-isogenies on supersingular elliptic curves. IEICE Trans. Fundam. 96-A(1), 158–165 (2013)

    Google Scholar 

Download references

Acknowledgements

The author would like to thank Kazuto Matsuo for his valuable comments on genus 2 division polynomials given in Sect. 4.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuyuki Takashima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Takashima, K. (2018). Efficient Algorithms for Isogeny Sequences and Their Cryptographic Applications. In: Takagi, T., Wakayama, M., Tanaka, K., Kunihiro, N., Kimoto, K., Duong, D. (eds) Mathematical Modelling for Next-Generation Cryptography. Mathematics for Industry, vol 29. Springer, Singapore. https://doi.org/10.1007/978-981-10-5065-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5065-7_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5064-0

  • Online ISBN: 978-981-10-5065-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics