Advertisement

Introduction to CREST Crypto-Math Project

  • Tsuyoshi TakagiEmail author
Chapter
Part of the Mathematics for Industry book series (MFI, volume 29)

Abstract

In this article we introduce the research project “Mathematical Modelling for Prevention of Future Security Compromises (Crypto-Math)” funded by CREST, Japan Science and Technology Agency.

Keywords

Security modeling Post-quantum cryptography Quantum Rabi model Zeta functions Lattice-based cryptography Multivariate public key cryptography Graph theory RSA key recovery attacks 

Notes

Acknowledgements

I would like to thank the co-investigators of the CREST Crypto-Math Project, Masato Wakayama, Keisuke Tanaka, and Noboru Kunihiro for their valuable comments and discussions on the activities of their research groups.

References

  1. 1.
    R. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    N. Koblitz, Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    V. Miller, Use of elliptic curves in cryptography, in CRYPTO’85. LNCS, vol. 218 (Springer, Berlin, 1985)Google Scholar
  4. 4.
    P. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    T. Takagi (ed.), 7th International Workshop on Post-Quantum Cryptography - PQCrypto 2016. LNCS, vol. 9606 (Springer, 2016)Google Scholar
  6. 6.
    A. Lenstra, H.W. Lenstra (eds.), The Development of the Number Field Sieve. Lecture Notes in Math, vol. 1554 (Springer, Berlin, 1993)Google Scholar
  7. 7.
    H. Lenstra, Factoring integers with elliptic curves. Ann. Math. 126(3), 649–673 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    A. Lenstra, H. Lenstra, L. Lovász, Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    P. Kocher, Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems, in CRYPTO’96. LNCS, vol. 1109 (Springer, 1996), pp. 104–113Google Scholar
  10. 10.
    D. Bleichenbacher, Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS #1, in CRYPTO’98. LNCS, vol. 1462 (Springer, 1998), pp. 1–12Google Scholar
  11. 11.
    I.I. Rabi, J.R. Zacharias, S. Millman, P. Kusch, A new method of measuring nuclear magnetic moment. Phys. Rev. 53(4), 318–327 (1938)CrossRefGoogle Scholar
  12. 12.
    S. Haroche, J.M. Raimond, Exploring the Quantum, Atoms, Cavities and Photons (Oxford University Press, Oxford, 2008)zbMATHGoogle Scholar
  13. 13.
    I. Rabi, On the process of space quantization. Phys. Rev. 49, 324–328 (1936)CrossRefzbMATHGoogle Scholar
  14. 14.
    I. Rabi, Space quantization in a gyrating magnetic field. Phys. Rev. 51, 652–654 (1937)CrossRefzbMATHGoogle Scholar
  15. 15.
    E.T. Jaynes, F.W. Cummings, Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89–109 (1963)CrossRefGoogle Scholar
  16. 16.
    D. Braak, Integrability of the Rabi model. Phys. Rev. Lett. 107, 100401–100404 (2011)CrossRefGoogle Scholar
  17. 17.
    E. Solano, Viewpoint: the dialogue between quantum light and matter. Physics 4, 52–68 (2011)CrossRefGoogle Scholar
  18. 18.
    L. Grover, A fast quantum mechanical algorithm for database search, in STOC’96 (1996), pp. 212–219Google Scholar
  19. 19.
    Y. Yuan, C.-M. Cheng, S. Kiyomoto, Y. Miyake, T. Takagi, Portable implementation of lattice-based cryptography using JavaScript. Int. J. Netw. Comput. 6(2), 309–327 (2016)CrossRefGoogle Scholar
  20. 20.
    M. Kudo, J. Yamaguchi, Y. Guo, M. Yasuda, Practical analysis of key recovery attack against search-LWE problem, in IWSEC 2016. LNCS, vol. 9836 (Springer, 2016), pp. 164–181Google Scholar
  21. 21.
    Y. Aono, Y. Wang, T. Hayashi, T. Takagi, Improved progressive BKZ algorithms and their precise cost estimation by sharp simulator, in Eurocrypt 2016. LNCS, vol. 9665 (Springer, 2016), pp. 789–819Google Scholar
  22. 22.
    S. Okumura, S. Sugiyama, M. Yasuda, T. Takagi, Security analysis of cryptosystems using short generators over ideal lattices. Cryptology ePrint Archive: Report 2015/1004Google Scholar
  23. 23.
    Y. Hashimoto, Cryptanalysis of the quaternion rainbow. IEICE Trans. E98–A(1), 144–152 (2015)CrossRefGoogle Scholar
  24. 24.
    D.H. Duong, A. Petzoldt, T. Takagi, Reducing the key size of the SRP encryption scheme, in ACISP 2016. LNCS, vol. 9723 (Springer, 2016), pp. 427–434Google Scholar
  25. 25.
    Y. Ikematsu, D.H. Duong, A. Petzoldt, T. Takagi, Revisiting the efficient key generation of ZHFE, in C2SI 2017. LNCS, vol. 10194 (Springer, 2017)Google Scholar
  26. 26.
    D.H. Duong, A. Petzoldt, Y. Wang, T. Takagi, Revisiting the cubic UOV signature scheme, in ICISC 2016. LNCS, vol. 10157 (Springer, 2017), pp. 223–238Google Scholar
  27. 27.
    Y.-J. Huang, C. Petit, N. Shinohara, T. Takagi, Improvement of FPPR method to solve ECDLP. Pac. J. Math. Ind. 7(1), 1–9 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    R. Xu, K. Morozov, T. Takagi, Note on some recent cheater identifiable secret sharing schemes. IEICE Trans. 98–A(8), 1814–1819 (2015)CrossRefGoogle Scholar
  29. 29.
    R. Hu, K. Morozov, T. Takagi, Zero-knowledge protocols for code-based public-key encryption. IEICE Trans. 98–A(10), 2139–2151 (2015)CrossRefGoogle Scholar
  30. 30.
    J. Ding, M. Kudo, S. Okumura, T. Takagi, C. Tao, Cryptanalysis of a public key cryptosystem based on diophantine equations via weighted LLL reduction, in IWSEC 2016. LNCS, vol. 9836 (Springer, 2016), pp. 305–315Google Scholar
  31. 31.
    S. Okumura, K. Akiyama, T. Takagi, An estimate of the complexity of the section finding problem on algebraic surfaces, in The Fourth International Symposium on Computing and Networking, CANDAR vol. 2016 (2016), pp. 28–36Google Scholar
  32. 32.
    H. Tachibana, K. Takashima, T. Takagi, Constructing an efficient hash function from 3-isogenies. JSIAM Lett. (to appear)Google Scholar
  33. 33.
    H. Jo, C. Petit, T. Takagi, Full cryptanalysis of hash functions based on cubic ramanujan graphs. IEICE Trans. (to appear)Google Scholar
  34. 34.
    A. Parmeggiani, M. Wakayama, Oscillator representations and systems of ordinary differential equations. Proc. Natl. Acad. Sci. 98, 26–30 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    A. Parmeggiani, Spectral Theory of Non-Commutative Harmonic Oscillators: An Introduction, vol. 1992, Lecture Notes in Mathematics (Springer, Berlin, 2010)CrossRefzbMATHGoogle Scholar
  36. 36.
    D. Goldfeld, Sur les produitd partiels eulerians attache aux courbes elliptiques. Comptes Rendus de l’Académie des Sciences, Series I Mathematics 294, 471–474 (1982)zbMATHGoogle Scholar
  37. 37.
    K. Conrad, Partial Euler products on the critical line. Can. J. Math. 57, 328–337 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    T. Kimura, S. Koyama, N. Kurokawa, Euler products beyond the boundary. Lett. Math. Phys. 104, 1–19 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    F. Hiroshima, I. Sasaki, Spectral analysis of non-commutative harmonic oscillators: the lowest eigenvalue and no crossing. J. Math. Anal. Appl. 105, 595–609 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    M. Wakayama, Equivalence between the eigenvalue problem of non-commutative harmonic oscillators and existence of holomorphic solutions of heun differential equations, eigenstates degeneration, and the Rabi model. Int. Math. Res. Not. 3, 759–794 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    M. Wakayama, T. Yamasaki, The quantum Rabi model and lie algebra representations of \(\mathfrak{sl}_2\). J. Phys. A: Math. Theor. 47(33), 335203 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    M. Wakayama, Symmetry of Asymmetric Quantum Rabi Models, arXiv:1701.03888v1 [math-ph, quant-ph]
  43. 43.
    Z.-M. Li, M.T. Batchelor, Algebraic equations for the exceptional eigenspectrum of the generalized Rabi model. J. Phys. A: Math. Theor. 48, 454005 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    S. Sugiyama, Spectral zeta functions for the quantum Rabi models. Nagoya Math. J. pp. 1-47 (2016). doi: 10.1017/nmj.2016.62
  45. 45.
    K. Hamamoto, K. Kimoto, K. Tachibana, M. Wakayama, Wreath determinants for group-subgroup pairs. J. Comb. Theory Ser. A 133, 76–96 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    C. Reyes-Bustos, Cayley-type graphs for group-subgroup pairs. Linear Algebra Appl. 488, 320–349 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    K. Kimoto, Wreath Determinants, Spherical Functions on Symmetric Groups and the Alon-Tarsi Conjecture. PreprintGoogle Scholar
  48. 48.
    M. Hirano, K. Katata, Y. Yamasaki, Ramanujan cayley graphs of frobenius groups. Bull. Aust. Math. Soc. 94(3), 373–383 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    F. Kitagawa, T. Matsuda, G. Hanaoka, K. Tanaka, Completeness of single-bit projection-KDM security for public key encryption, in CT-RSA 2015. LNCS, vol. 9048 (Springer, 2015), pp. 201–219Google Scholar
  50. 50.
    Y. Wang, K. Tanaka, Generic transformation to strongly existentially unforgeable signature schemes with continuous leakage resiliency, in ACISP 2015. LNCS, vol. 9144 (Springer, 2015), pp. 213–229Google Scholar
  51. 51.
    Y. Wang, T. Matsuda, G. Hanaoka, K. Tanaka, Signatures resilient to uninvertible leakage, in SCN 2016. LNCS, vol. 9841 (Springer, 2016), pp. 372–390Google Scholar
  52. 52.
    T.M. Thanh, K. Tanaka, The novel and robust watermarking method based on q-logarithm frequency domain. Multimed. Tools Appl. pp. 1-29 (2015)Google Scholar
  53. 53.
    T.M. Thanh, K. Tanaka, Comparison of watermarking schemes using linear and nonlinear feature matching, in KSE 2015, (IEEE, 2015), pp. 262–267Google Scholar
  54. 54.
    A. Ishida, K. Emura, G. Hanaoka, Y. Sakai, K. Tanaka, Group signature with deniability: how to disavow a signature, in CANS 2016. LNCS, vol. 1052 (Springer, 2016), pp. 228–244Google Scholar
  55. 55.
    M. Hasegawa, A. Honda, K. Naokawa, K. Saji, M. Umehara, K. Yamada, Intrinsic properties of singularities of surfaces. Int. J. Math. 26(4), 1540008 (34 pages) (2015)Google Scholar
  56. 56.
    S. Kojima, Normalized entropy versus volume for pseudo-anosovs, in Proceedings of 62nd Symposium on Topology (Nagoya Institute of Technology, 2015), pp. 1–10Google Scholar
  57. 57.
    T. Kitayama, Y. Terashima, Torsion functions on moduli spaces in view of the cluster algebra. Geom. Dedicata. 175(1), 125–143 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    A. Ishida, K. Emura, G. Hanaoka, Y. Sakai, K. Tanaka, Disavowable public key encryption with non-interactive opening. IEICE Trans. E98–A(12), 2446–2455 (2015)CrossRefGoogle Scholar
  59. 59.
    F. Kitagawa, T. Matsuda, G. Hanaoka, K. Tanaka, On the key dependent message security of the Fujisaki-Okamoto constructions, in PKC 2016. LNCS, vol. 9615 (Springer, 2016), pp. 99–129Google Scholar
  60. 60.
    A. Kawachi, H. Takebe, K. Tanaka, Lower bounds for key length of k-wise almost independent permutations and certain symmetric-key encryption schemes, in IWSEC 2016. LNCS, vol. 9836 (Springer, 2016), pp. 195–211Google Scholar
  61. 61.
    Y. Wang, K. Tanaka, Generic transformations for existentially unforgeable signature schemes in the bounded leakage model. Secur. Commun. Netw. 9(12), 1829–1842 (2016)CrossRefGoogle Scholar
  62. 62.
    T. Nakamura, S. Nishibata, Boundary layer solution to system of viscous conservation laws in half line. Bull. Braz. Math. Soc. 47(2), 619–630 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Y. Maekawa, H. Miura, On poisson operators and Dirichlet-Neumann maps in hs for divergence form elliptic operators with Lipschitz coefficients. Trans. Am. Math. Soc. 368(9), 6227–6252 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    A. Takayasu, N. Kunihiro, Partial key exposure attacks on CRT-RSA: better cryptanalysis to full size encryption exponents, in ACNS 2015. LNCS, vol. 9092 (Springer, 2015), pp. 518–537Google Scholar
  65. 65.
    A. Takayasu, N. Kunihiro, General bounds for small inverse problems and its applications to multi-prime RSA. IEICE Trans. E100–A(1), 50–61 (2017)CrossRefzbMATHGoogle Scholar
  66. 66.
    A. Takayasu, N. Kunihiro, How to generalize RSA cryptanalyses, in PKC 2016. LNCS, vol. 9615 (Springer, 2016), pp. 67–97Google Scholar
  67. 67.
    A. Takayasu, N. Kunihiro, Partial key exposure attacks on RSA with multiple exponent pairs, in ACISP 2016. LNCS, vol. 9723 (Springer, 2016), pp. 243–257Google Scholar
  68. 68.
    A. Takayasu, Y. Lu, L. Peng, Small CRT-exponent RSA revisited, in Eurocrypt 2017. LNCS (Springer, to appear)Google Scholar
  69. 69.
    Y. Lu, R. Zhang, L. Peng, D. Lin, Solving linear equations modulo unknown divisors: revisited, Asiacrypt 2015. LNCS, vol. 9452 (Springer, 2015), pp. 189–213Google Scholar
  70. 70.
    Y. Lu, L. Peng, R. Zhang, D. Lin, Towards optimal bounds for implicit factorization problem, in SAC 2015. LNCS, vol. 9566 (Springer , 2015), pp. 462–476Google Scholar
  71. 71.
    N. Kunihiro, An improved attack for recovering noisy RSA secret keys and its countermeasure, in ProvSec 2015. LNCS, vol. 9451 (Springer, 2015), pp. 61–81Google Scholar
  72. 72.
    T. Tanigaki, N. Kunihiro, Maximum likelihood-based key recovery algorithm from decayed key schedules, in ICISC 2015. LNCS, vol. 9558 (Springer, 2015), pp. 314–328Google Scholar
  73. 73.
    N. Kunihiro, Y. Takahashi, Improved key recovery algorithms from noisy RSA secret keys with analog noise, in CT-RSA 2017. LNCS, vol. 10159 (Springer, 2017), pp. 328–346Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Mathematics for IndustryKyushu UniversityFukuokaJapan

Personalised recommendations