Advertisement

Killer Yeasts as Biocontrol Agents of Postharvest Fungal Diseases in Lemons

  • María Florencia Perez
  • Ana Sofía Isas
  • Azzam Aladdin
  • Hesham A. El Enshasy
  • Julián Rafael DibEmail author
Chapter
Part of the Applied Environmental Science and Engineering for a Sustainable Future book series (AESE)

Abstract

One of the main problems affecting the citrus industry worldwide is caused by fungal diseases at postharvest stage. This leads to huge amounts of lemon fruit being unnecessarily discarded which contributed to the overall generation of agricultural wastes. Synthetic fungicides are nowadays the major agents used to control diseases of fungal origin. However, long-term and uncontrolled usage may lead to environmental problems such as growing restrictions that are mainly due to its toxicity. Among biocontrol agents, killer yeasts appear as efficient candidates especially for combating fungal postharvest decay in lemons.

Keywords

Killer yeast Penicillium Biocontrol Postharvest 

References

  1. Arras G (1996) Mode of action of an isolate of Candida famata in biological control of Penicillium digitatum in orange fruits. Postharvest Biol Technol 8:191–198CrossRefGoogle Scholar
  2. Arras G, De Cicco V, Arru S, Lima G (1998) Biocontrol by yeasts of blue mould of citrus fruits and the mode of action of an isolate of Pichia guilliermondii. J Hortic Sci Biotechnol 73:413–418CrossRefGoogle Scholar
  3. Bocco A, Cuvelier MA, Richard H, Berset C (1998) Antioxidant activity and phenolic composition of citrus peel and seed extracts. J Agric Food Chem 46:2123–2129CrossRefGoogle Scholar
  4. Boubaker H, Saadi B, Boudyach EH, Ait Benaoumar A (2009) Sensitivity of Penicillium digitatum and Penicillium italicum to imazalil and thiabendazole in Morocco. Plant Pathol J 4:152–158CrossRefGoogle Scholar
  5. Carbajo MS (2011) Sistemas alternativos a los fungicidas químicos para el control de Penicillium digitatum Sacc. en limón. Trabajo de tesis para optar al grado de Magíster en Producción Vegetal, Universidad de Buenos Aires, Argentina, p 124Google Scholar
  6. Chanchaichaovivat A, Ruenwongsa P, Panijpan B (2007) Screening and identification of yeast strains from fruits and vegetables: potential for biological control of postharvest chilli anthracnose (Colletotrichum capsici). Biol Control 42:326–335CrossRefGoogle Scholar
  7. Cocco M (2005) Determinación de resistencia a fungicidas tradicionales en cepas de Penicillium digitatum y Penicillium italicum en distintas quintas y empaques de la región. Actas del II Seminario Internacional de Postcosecha de Cítricos. Ediciones INTA, pp 104–107Google Scholar
  8. Coelho AR, Celli MG, Ono EYS, Wosiacki G (2007) Penicillium expansum versus antagonist yeasts with perspectives of application in biocontrol and patulin degradation. Braz Arch Biol Technol 50:725–733CrossRefGoogle Scholar
  9. Droby S, Porat R, Cohen L, Weiss B, Shapiro B, Philosoph-Hadas S, Meir S (1999) Suppressing green mold decay in grapefruit with postharvest jasmonate application. J Am Soc Hortic Sci 124:184–188Google Scholar
  10. Droby S, Vinokur V, Weiss B, Cohen L, Daus A, Goldschmidt E, Porat R (2002) Induction of resistance to Penicillium digitatum in grapefruit by the yeast biocontrol agent Candida oleophila. Phytopathology 92:393–399CrossRefGoogle Scholar
  11. Droby S, Wisniewski M, Macarisin D, Wilson C (2009) Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biol Technol 52:137–145CrossRefGoogle Scholar
  12. Druvefors UÄ (2004) Yeast biocontrol of grain spoilage moulds – mode of action of Pichia anomala. Doctor’s dissertation ISSN 1401-6249, IBSN 91-576-6493-5. Retrieved January 11, 2011, from Epsilon dissertations and graduate. Theses archive web site: http://diss-epsilon.slu.se:8080/archive/00000552/01/U%C3%84Dfin0.pdf
  13. Eckert JW, Ratnayake M, Gutter Y (1984) Volatiles from wounded citrus fruits stimulate germination of Penicillium digitatum conidia. Phytopathology 74:793Google Scholar
  14. El-Ghaouth A, Smilanick JL, Wilson CL (2000) Enhancement of the performance of Candida saitoana by the addition of glycochitosan for control of postharvest decay of apple and citrus fruit. Postharvest Biol Technol 19:249–253CrossRefGoogle Scholar
  15. El-Tarabily KA, Sivasithamparam K (2006) Potential of yeasts as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Mycoscience 47:25–35CrossRefGoogle Scholar
  16. Fan Q, Tian SP (2000) Postharvest biological control of Rhizopus rot of nectarine fruits by Pichia membranefaciens. Plant Dis 84:1212–1216CrossRefGoogle Scholar
  17. Ferraz LP, da Cunha T, da Silva AC, Kupper KC (2016) Biocontrol ability and putative mode of action of yeasts against Geotrichum citri-aurantii in citrus fruit. Microbiol Res 188:72–79CrossRefGoogle Scholar
  18. Garrán SM (1996) Enfermedades durante la postcosecha. Manual para productores de naranjas y mandarinas de la región del río Uruguay. INTA 12:173–240Google Scholar
  19. Giobbe S, Marceddu S, Scherm B, Zara G, Mazzarello VL, Budroni M, Migheli Q (2007) The strange case of a biofilm-forming strain of Pichia fermentans, which controls Monilinia brown rot on apple but is pathogenic on peach fruit. FEMS Yeast Res 7(8):1389–1398CrossRefGoogle Scholar
  20. Golubev W, Shabalin Y (1994) Mycocin production by the yeast Cryptococcus humicola. FEMS Microbiol Lett 119:105–110CrossRefGoogle Scholar
  21. Grevesse C, Lepoivre F, Jijakli MH (2003) Characterization of the exoglucanase-encoding gene aEXG2 and study of its role in the biocontrol activity of Pichia anomala strain K. Phytopathology 93:1145–1152CrossRefGoogle Scholar
  22. Harvey JM (1978) Reduction of losses in fresh market fruits and vegetables. Annu Rev Phytopathol 16:321–341CrossRefGoogle Scholar
  23. Hashem M, Alamri S (2009) The biocontrol of postharvest disease (Botryodiplodia theobromae) of guava (Psidium guajava L.) by the application of yeast strains. Postharvest Biol Technol 53:123–130CrossRefGoogle Scholar
  24. Hernández-Montiel LG, Ochoa JL, Troyo-Diéguez E, Larralde-Corona CP (2010) Biocontrol of postharvest blue mold (Penicillium italicum Wehmer) on Mexican lime by marine and citrus Debaryomyces hansenii isolates. Postharvest Biol Technol 56(2):181–187CrossRefGoogle Scholar
  25. Izgu DA, Kepekci RA, Izgu F (2011) Inhibition of Penicillium digitatum and Penicillium italicum in vitro and in planta with Panomycocin, a novel exo-β-1,3-glucanase isolated from Pichia anomala NCYC 434. Antonie Van Leeuwenhoek 99:85–91CrossRefGoogle Scholar
  26. Jamalizadeh M, Etebarian HR, Aminian H, Alizadeh A (2011) A review of mechanisms of action of biological control organisms against postharvest fruit spoilage. Bull OEPP/EPPO 41:65–71CrossRefGoogle Scholar
  27. Janisiewicz WJ, Korsten L (2002) Biological control of postharvest diseases of fruits. Annu Rev Phytopathol 40:411–441CrossRefGoogle Scholar
  28. Janisiewicz WJ, Saftner RA, Conway WS, Yoder KS (2008) Control of blue mold decay of apple during commercial controlled atmosphere storage with yeast antagonists and sodium bicarbonate. Postharvest Biol Technol 49:374–378CrossRefGoogle Scholar
  29. Katz H, Berkovitz A, Chalutz E, Droby S, Hofstein R, Karen-Tzoor M (1995) Compatibility of ecogens biofungicide aspire, a yeast based preparation, with other fungicides commonly used for the control of postharvest decay of citrus. Phytopathology 85:1123Google Scholar
  30. Kefialewa Y, Ayalewb A (2008) Postharvest biological control of anthracnose (Colletotrichum gloeosporioides) on mango (Mangifera indica). Postharvest Biol Technol 50:8–10CrossRefGoogle Scholar
  31. Kelman A (1989) Introduction: the importance of research on the control of postharvest diseases of perishable food crops. Phytopathology 79:1374Google Scholar
  32. Liu S, Tsao M (2009) Inhibition of spoilage yeasts in cheese by killer yeast Williopsis saturnus var. saturnus. Int J Food Microbiol 131:280–282CrossRefGoogle Scholar
  33. Liu X, Fang W, Liu L, Yu T, Lou B, Zheng X (2010) Biological control of postharvest sour rot of citrus by two antagonistic yeasts. Lett Appl Microbiol 51:30–35Google Scholar
  34. Long CA, Wu Z, Deng BX (2005) Biological control of Penicillium italicum of citrus and Botrytis cinerea of grape by strain 34–9 of Kloeckera apiculata. Eur Food Res Technol 221(1–2):197–201CrossRefGoogle Scholar
  35. Long CA, Deng BX, Deng XX (2006) Pilot testing of Kloeckera apiculata for the biological control of postharvest diseases of citrus. Ann Microbiol 56:13–17CrossRefGoogle Scholar
  36. López-García B, Veyrat A, Pérez-Payá E (2003) Comparison of the activity of antifungal hexapeptides and the fungicides thiabendazole and imazalil against postharvest fungal pathogens. Int J Food Microbiol 89:163–170CrossRefGoogle Scholar
  37. Lowes K, Shearman C, Payne J, Mackenzie D, Archer D, Merry R, Gasson M (2000) Prevention of yeast spoilage in feed and food by the yeast mycocin HMK. Appl Environ Microbiol 66:1066–1076CrossRefGoogle Scholar
  38. Luo Y, Zeng K, Ming J (2012) Control of blue and green mold decay of citrus fruit by Pichia membranefaciens and induction of defense responses. Sci Hortic (Amsterdam) 135:120–127CrossRefGoogle Scholar
  39. Magliani W, Conti S, Travassos LR, Polonelli L (2008) From yeast killer toxins to antibodies and beyond. FEMS Microbiol Lett 288:1–8CrossRefGoogle Scholar
  40. Makovitzki A, Viterbo A, Brotman Y, Chet I, Shai Y (2007) Inhibition of fungal and bacterial plant pathogens in vitro and in planta with ultrashort cationic lipopeptides. Appl Environ Microbiol 73(20):6629–6636CrossRefGoogle Scholar
  41. Makower M, Bevan EA (1963) The inheritance of the killer character in yeast (Saccharomyces cerevisiae). In: Proceedings of the 11th International Congress on Genetics, vol I. Pergamon Press, Oxford, pp 202–203Google Scholar
  42. Marquina D, Santos A, Peinado JM (2002) Biology of killer yeasts. Int Microbiol 5:65–71CrossRefGoogle Scholar
  43. McGuire RG (2000) Population dynamics of postharvest decay antagonists growing epiphytically and within wounds on grapefruit. Phytopathology 90:1217–1223CrossRefGoogle Scholar
  44. McGuire R, Hagenmaier R (1995) Storage waxes that support growth of Candida oleophila for biocontrol of Penicillium digitatum on citrus. Phytopathology 85:1166Google Scholar
  45. Meier GE (2005) Sales de sodio como alternativas a los fungicidas tradicionales para el control de moho verde y moho azul. Actas del II Seminario Internacional de Postcosecha de Cítricos. Vázquez DE, Meier GE, Cocco M. Ediciones INTA, pp 108–110Google Scholar
  46. Mercier I, Smilanick JL (2005) Control of green mold and sour rot of stored lemon by biofumigation with Muscodor albus. Biol Control 32:401–407CrossRefGoogle Scholar
  47. Muller I (2005) Investigaciones en poscosecha en INIA Salto Grande. Evaluación de nuevos fungicidas. Actas del II Seminario Internacional de Postcosecha de Cítricos. Ediciones INTA, Argentina, pp 84–88Google Scholar
  48. Palou L (2007) Evaluación de alternativas para el tratamiento antifúngico en poscosecha de cítricos de Producción Integrada. Rev Hortic 82:93Google Scholar
  49. Palou L, Smilanick JL, Droby S (2008) Alternatives to conventional fungicides for the control of citrus postharvest green and blue molds. Stewart Postharvest Rev 4:1–16Google Scholar
  50. Perez MF, Contreras L, Garnica NM, Fernández-Zenoff MV, Farías ME, Sepulveda M, Dib JR (2016) Native killer yeasts as biocontrol agents of postharvest fungal diseases in lemons. PLoS One 11(10):e0165590CrossRefGoogle Scholar
  51. Perez MF, Perez Ibarreche J, Isas AS, Sepulveda M, Ramallo J, Dib JR (2017) Antagonistic yeasts for the biological control of Penicillium digitatum on lemons stored under export conditions. Biol Control 115:135–140Google Scholar
  52. Platania C, Restuccia C, Muccilli S, Cirvilleri G (2012) Efficacy of killer yeasts in the biological control of Penicillium digitatum on Tarocco orange fruits (Citrus sinensis). Food Microbiol 30:219–225CrossRefGoogle Scholar
  53. Ragone ME (1999) Niveles de contaminación fúngica en galpones de empaque de exportación de frutas cítricas de la región de Concordia. Trabajo final de Graduación. Facultad de Ciencias Agrarias. Universidad Nacional del Nordeste. Corrientes, ArgentinaGoogle Scholar
  54. Ren X, Kong Q, Wang H, Yu T, Zhou W, Zheng X (2011) Biocontrol of fungal decay of citrus fruit by Pichia pastoris recombinant strains expressing cecropin A. Food Chem 131:796–801CrossRefGoogle Scholar
  55. Rosa MM, Tauk-Tornisielo SM, Rampazzo PE, Ceccato-Antonini SR (2010) Evaluation of the biological control by the yeast Torulaspora globosa against Colletotrichum sublineolum in sorghum. World J Microbiol Biotechnol 26:1491–1502CrossRefGoogle Scholar
  56. Sánchez-Torres P, Tuset JJ (2011) Molecular insights into fungicide resistance in sensitive and resistant Penicillium digitatum strains infecting citrus. Postharvest Biol Technol 59:159–165CrossRefGoogle Scholar
  57. Sharma R, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50:205–221CrossRefGoogle Scholar
  58. Smilanick JL, Mansour MF, Gabler FM, Sorenson D (2008) Control of citrus postharvest green mold and sour rot by potassium sorbate combined with heat and fungicides. Postharvest Biol Technol 47(2):226–223CrossRefGoogle Scholar
  59. Sulo P, Michalcakova S (1992) The K3 type killer strains of genus Saccharomyces for wine production. Folia Microbiol 37:289–294CrossRefGoogle Scholar
  60. Sulo P, Michalcakova S, Reiser V (1992) Construction and properties of K1 type killer wine yeasts. Biotechnol Lett 14:55–60CrossRefGoogle Scholar
  61. Suprapta DN, Arai K, Iwai H (1997) Effects of volatile compounds on arthrospore germination and mycelial growth of Geotrichum candidum citrus race. Mycoscience 38:31–35CrossRefGoogle Scholar
  62. Talibi I, Boubaker H, Boudyach EH, Ait Ben Aoumar A (2014) Alternative methods for the control of postharvest citrus diseases. J Appl Microbiol 117(1):1–17CrossRefGoogle Scholar
  63. Taqarort N, Echairi A, Chaussod R, Nouaim R, Boubaker H, Benaoumar AA, Boudyach E (2008) Screening and identification of epiphytic yeasts with potential for biological control of green mold of citrus fruits. World J Microbiol Biotechnol 24:3031–3038CrossRefGoogle Scholar
  64. Torres Leal GJ, Velázquez PD, Paz AE, Farías MF (2008) Control of Penicillium digitatum (Green mold) by sodium bicarbonate in lemon fruit in Tucuman (Argentina). In: Proceedings of the international society of citriculture, XI Congress, Wuhan, China, p 1369Google Scholar
  65. Tripathi P, Dubey N (2003) Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol Technol 32:235–245CrossRefGoogle Scholar
  66. Tuset JA (1987) Podredumbres de los frutos cítricos. Generalitat Valenciana, Valencia, p 206Google Scholar
  67. Utama IMS, Wills RB, Ben-yehoshua S, Kuek C (2002) In vitro efficacy of plant volatiles for inhibiting the growth of fruit and vegetable decay microorganisms. J Agric Food Chem 50(22):6371–6377CrossRefGoogle Scholar
  68. Vázquez DE, Ragone M, Garrán S (1995) Factores que afectan la calidad de los frutos cítricos. Informe técnico de la Estación Experimental Agropecuaria Concordia del INTA, p 14Google Scholar
  69. Velázquez PD, Farías MF, Carbajo MS, Torres Leal GJ (2010) Eficacia de los fungicidas azoxistrobin fluodioxinil en el control curativo de “moho verde” causado por Penicillium digitatum en frutos de limón. Libro de Resúmenes XXXIII Congreso Argentino de Horticultura, Rosario, p 142Google Scholar
  70. Viñas I (1990) Principios básicos de la patología de poscosecha. FRUT 5:285–292Google Scholar
  71. Wang YF, Bao YH, Shen DH, Feng W (2008) Biocontrol of Alternaria alternata on cherry tomato fruit by use of marine yeast Rhodosporidium paludigenum Fell & Tallman. Int J Food Microbiol 123:234–239CrossRefGoogle Scholar
  72. Wilson CL, Chalutz E (1989) Postharvest biological control of Penicillium rots with antagonistic yeasts and bacteria. Sci Hortic 40:105–112CrossRefGoogle Scholar
  73. Wisnieswski ME, Biles C, Droby S, McLaughlin R, Wilson C, Chalutz E (1991) Mode of action of the postharvest biocontrol yeast, Pichia guilliermondii. Characterization of attachment to Botrytis cinerea. Physiol Mol Plant Pathol 39:245–258CrossRefGoogle Scholar
  74. Wisnieswski M, Wilson C, Droby S, Chalutz E, ElGhaouth A, Stevens C (2007) Postharvest biocontrol: new concepts and applications. In: biological control: a global perspective. CAB International, Wallingford, pp 262–273Google Scholar
  75. Yao HJ, Tian SP (2005) Effects of a biocontrol agent and methyl jasmonate on postharvest diseases of peach fruit and the possible mechanisms involved. J Appl Microbiol 98:941–950CrossRefGoogle Scholar
  76. Zhang HY, Zheng XD, Xi YF (2005) Biological control of postharvest blue mold of oranges by Cryptococcus laurentii (Kufferath) Skinner. BioControl 50(2):331–342CrossRefGoogle Scholar
  77. Zhang D, Spadaro D, Garibaldi A, Gullino ML (2010) Selection and evaluation of new antagonists for their efficacy against postharvest brown rot of peaches. Postharvest Biol Technol 55:174–181CrossRefGoogle Scholar
  78. Zheng XD, Zhang HY, Sun P (2005) Biological control of postharvest green mold decay of oranges by Rhodotorula glutinis. Eur Food Res Technol 220:353–357CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • María Florencia Perez
    • 1
  • Ana Sofía Isas
    • 1
  • Azzam Aladdin
    • 2
  • Hesham A. El Enshasy
    • 2
  • Julián Rafael Dib
    • 1
    • 3
    Email author
  1. 1.Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET)TucumánArgentina
  2. 2.Institute of Bioproduct DevelopmentUniversiti Teknologi MalaysiaJohor BahruMalaysia
  3. 3.Instituto de Microbiología, Facultad de Bioquímica, Química y FarmaciaUniversidad Nacional de TucumánTucumánArgentina

Personalised recommendations