Skip to main content

Application of Novel Biochars from Maize Straw Mixed with Fermentation Wastewater for Soil Health

  • Chapter
  • First Online:
Sustainable Technologies for the Management of Agricultural Wastes

Abstract

Recently more and more researches have focused on the preparation of novel biochars for specific use in soil amendment. A series of novel biochars (MS) produced by maize straw mixed with different fermentation wastewater are introduced for their preparation and application for soil health. Preparation methods of novel biochars include physical activation, chemical activation, and blending modification. Physical activations are more efficient than chemical activations in enhancing pristine biochar’s surface structure, while the chemical activations are more capable in creating special functional groups. Blending modification method, mixing different kinds of additives with waste biomass together before pyrolysis, is usually used to increase the nutrient contents. The modified novel biochars have excellent properties such as high surface area and pore volume, rich functional groups, and high nutrient contents. The application of novel biochars to soil can improve soil fertility, promote plant growth, and increase crop yield. After the application of the novel MS biochars in soil, the contents of soil organic carbon and nitrogen were significantly increased. The addition of 5% novel biochar to soil showed the best performance for ryegrass growth and H2O2 enzymatic activity enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agegnehu G, Bass AM, Nelson PN, Muirhead B, Wright G, Bird MI (2015) Biochar and biochar-compost as soil amendments: effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agric Ecosyst Environ 213:72–85

    Article  CAS  Google Scholar 

  • Ahmad M, Rajapaksha AU, Lim JU, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS, (2014) Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99:19–33

    Google Scholar 

  • Ahmed MB, Zhou JL, Ngo HH, Guo W, Chen M (2016) Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour Technol 214:836–851

    Article  CAS  Google Scholar 

  • Almaroai YA, Usman ARA, Ahmad M, Moon DH, Cho J-S, Joo YK, Jeon C, Lee SS, Ok YS (2013) Effects of biochar, cow bone, and eggshell on Pb availability to maize in contaminated soil irrigated with saline water. Environ Earth Sci 71(3):1289–1296

    Article  Google Scholar 

  • Asai H, Samson BK, Stephan HM, Songyikhangsuthor K, Homma K, Kiyono Y, Inoue Y, Shiraiwa T, Horie T (2009) Biochar amendment techniques for upland rice production in Northern Laos. Field Crop Res 111(1–2):81–84

    Article  Google Scholar 

  • Bailey VL, Fansler SJ, Smith JL, Bolton H (2011) Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization. Soil Biol Biochem 43(2):296–301

    Article  CAS  Google Scholar 

  • Beesley L, Moreno-Jimenez E, Gomez-Eyles JL, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159(12):3269–3282

    Article  CAS  Google Scholar 

  • Butnan S, Deenik JL, Toomsan B, Antal MJ, Vityakon P (2015) Biochar characteristics and application rates affecting corn growth and properties of soils contrasting in texture and mineralogy. Geoderma 237–238:105–116

    Article  Google Scholar 

  • Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428

    Article  CAS  Google Scholar 

  • Cha JS, Park SH, Jung S-C, Ryu C, Jeon J-K, Shin M-C, Park Y-K (2016) Production and utilization of biochar: a review. J Ind Eng Chem 40:1–15

    Article  CAS  Google Scholar 

  • Chen B, Chen Z (2009) Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76(1):127–133

    Article  CAS  Google Scholar 

  • Chen B, Zhou D, Zhu L (2008) Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ Sci Technol 42(14):5137–5143

    Article  CAS  Google Scholar 

  • Chen B, Chen Z, Lv S (2011) A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresour Technol 102(2):716–723

    Article  CAS  Google Scholar 

  • Ding Y, Liu Y, Liu S, Li Z, Tan X, Huang X, Zeng G, Zhou L, Zheng B (2016) Biochar to improve soil fertility. a review. Agron Sustain Dev 36(2):36–36

    Article  Google Scholar 

  • Fang C, Zhang T, Li P, Jiang R, Wu S, Nie H, Wang Y (2015) Phosphorus recovery from biogas fermentation liquid by Ca–Mg loaded biochar. J Environ Sci 29:106–114

    Article  Google Scholar 

  • Gaskin JW, Speir RA, Harris K, Das KC, Lee RD, Morris LA, Fisher DS (2010) Effect of peanut hull and pine chip biochar on soil nutrients, corn nutrient status, and yield. Agron J 102(2):623–633

    Article  CAS  Google Scholar 

  • Griffin DE, Wang D, Parikh SJ, Scow KM (2017) Short-lived effects of walnut shell biochar on soils and crop yields in a long-term field experiment. Agric Ecosyst Environ 236:21–29

    Article  CAS  Google Scholar 

  • Gul S, Whalen JK (2016) Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biol Biochem 103:1–15

    Article  CAS  Google Scholar 

  • Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H (2015) Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric Ecosyst Environ 206:46–59

    Article  CAS  Google Scholar 

  • Jing XR, Wang Y-Y, Liu WJ, Wang YK, Jiang H (2014) Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar. Chem Eng J 248:168–174

    Article  CAS  Google Scholar 

  • Jones DL, Rousk J, Edwards-Jones G, DeLuca TH, Murphy DV (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124

    Article  CAS  Google Scholar 

  • Kameyama K, Miyamoto T, Shiono T (2012) Influence of sugarcane bagasse-derived biochar application on nitrate leaching in calcaric dark red soil. J Environ Qual 41(4):1131–1137

    Article  CAS  Google Scholar 

  • Khan S, Chao C, Waqas M, Arp HP, Zhu YG (2013) Sewage sludge biochar influence upon rice Oryza sativa L yield, metal bioaccumulation and greenhouse gas emissions from acidic paddy soil. Environ Sci Technol 47(15):8624–8632

    Article  CAS  Google Scholar 

  • Koltowski M, Charmas B, Skubiszewska-Zieba J, Oleszczuk P (2017) Effect of biochar activation by different methods on toxicity of soil contaminated by industrial activity. Ecotoxicol Environ Saf 136:119–125

    Article  CAS  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota – a review. Soil Biol Biochem 43(9):1812–1836

    Article  CAS  Google Scholar 

  • Lentz RD, Ippolito JA (2012) Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake. J Environ Qual 41(4):1033–1043

    Article  CAS  Google Scholar 

  • Li Y, Shao J, Wang X, Deng Y, Yang H, Chen H (2014) Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption. Energy Fuel 28(8):5119–5127

    Article  CAS  Google Scholar 

  • Liang B, Lehmann J, Solomon D, Kinyangi J, Grossman J, O’Neill B, Skjemstad JO, Thies J, Luizão FJ, Petersen J, Neves EG (2006) Black carbon increases cation exchange capacity in soils. Soil Sci Soc Am J 70(5):1719–1730

    Article  CAS  Google Scholar 

  • Lim TJ, Spokas KA, Feyereisen G, Novak JM (2016) Predicting the impact of biochar additions on soil hydraulic properties. Chemosphere 142:136–144

    Article  CAS  Google Scholar 

  • Liu WJ, Zeng FX, Jiang H, Zhang XS (2011) Preparation of high adsorption capacity bio-chars from waste biomass. Bioresour Technol 102(17):8247–8252

    Article  CAS  Google Scholar 

  • Liu P, Liu WJ, Jiang H, Chen JJ, Li WW, Yu HQ (2012) Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresour Technol 121:235–240

    Article  CAS  Google Scholar 

  • Liu X, Zhang A, Ji C, Joseph S, Bian R, Li L, Pan G, Paz-Ferreiro J (2013) Biochar’s effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data. Plant Soil 373(1–2):583–594

    Article  CAS  Google Scholar 

  • Mandal A, Singh N, Purakayastha TJ (2017) Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal. Sci Total Environ 577:376–385

    Article  CAS  Google Scholar 

  • Novak JM, Ippolito JA, Lentz RD, Spokas KA, Bolster CH, Sistani K, Trippe KM, Phillips CL, Johnson MG (2016a) Soil health, crop productivity, microbial transport, and mine spoil response to biochars. Bioenergy Res 9(2):454–464

    Article  CAS  Google Scholar 

  • Novak J, Sigua G, Watts D, Cantrell K, Shumaker P, Szogi A, Johnson MG, Spokas K (2016b) Biochars impact on water infiltration and water quality through a compacted subsoil layer. Chemosphere 142:160–167

    Article  CAS  Google Scholar 

  • Rajapaksha AU, Vithanage M, Zhang M, Ahmad M, Mohan D, Chang SX, Ok YS (2014) Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresour Technol 166:303–308

    Article  CAS  Google Scholar 

  • Rajapaksha AU, Vithanage M, Ahmad M, Seo DC, Cho JS, Lee SE, Lee SS, Ok YS (2015) Enhanced sulfamethazine removal by steam-activated invasive plant-derived biochar. J Hazard Mater 290:43–50

    Article  CAS  Google Scholar 

  • Rajapaksha AU, Chen SS, Tsang DC, Zhang M, Vithanage M, Mandal S, Gao B, Bolan NS, Ok YS (2016) Engineered/designer biochar for contaminant removal/immobilization from soil and water: potential and implication of biochar modification. Chemosphere 148:276–291

    Article  CAS  Google Scholar 

  • Ro KS, Cantrell KB, Hunt PG (2010) High-temperature pyrolysis of blended animal manures for producing renewable energy and value-added biochar. Indust Eng Chem Res 49(20):10125–10131

    Google Scholar 

  • Schimmelpfennig S, Glaser B (2012) One step forward toward characterization: some important material properties to distinguish biochars. J Environ Qual 41(4):1001

    Article  CAS  Google Scholar 

  • Shafie ST, Salleh MAM, Hang LL, Rahman MM, Ghani WAWAK (2012) Effect of pyrolysis temperature on the biochar nutrient and water retention capacity. J Purity Util React Environ 1(6):293–307

    CAS  Google Scholar 

  • Shen B, Li G, Wang F, Wang Y, He C, Zhang M, Singh S (2015) Elemental mercury removal by the modified bio-char from medicinal residues. Chem Eng J 272:28–37

    Article  CAS  Google Scholar 

  • Sherif M, Elsherifb E (2015) Investigation of strontium (II) sorption kinetic and thermodynamic onto straw-derived biochar. Particulate Sci Technol 0:1–8

    Google Scholar 

  • Shim T, Yoo J, Ryu C, Park YK, Jung J (2015) Effect of steam activation of biochar produced from a giant Miscanthus on copper sorption and toxicity. Bioresour Technol 197:85–90

    Article  CAS  Google Scholar 

  • Solaiman ZM, Blackwell P, Abbott LK (2010) Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Soil Res 48(7):546–554

    Article  CAS  Google Scholar 

  • Song XD, Xue XY, Chen DZ, He PJ, Dai XH (2014) Application of biochar from sewage sludge to plant cultivation: influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation. Chemosphere 109:213–220

    Article  CAS  Google Scholar 

  • Spokas KA, Novak JM, Masiello A, Johnson G, Colosky EC, Ippolito JA, Trigo C (2014a) Physical disintegration of biochar: an overlooked process. Environ Sci Technol 1:326–332

    Google Scholar 

  • Spokas KA (2014b) Review of the stability of biochar in soils: predictability of O:C molar ratios. Carbon Manag 1(2):289–303

    Google Scholar 

  • Steiner C, Teixeira WG, Lehmann J, Nehls T, de Macêdo JLV, Blum WEH, Zech W (2007) Long term effects of manure, charcoal and mineral fertilization on crop production and fertility on a highly weathered Central Amazonian upland soil. Plant Soil 291(1–2):275–290

    Article  CAS  Google Scholar 

  • Steiner C, Glaser B, Geraldes Teixeira W, Lehmann J, Blum WEH, Zech W (2008) Nitrogen retention and plant uptake on a highly weathered central Amazonian Ferralsol amended with compost and charcoal. J Plant Nutr Soil Sci 171(6):893–899

    Article  CAS  Google Scholar 

  • Tang J, Lv H, Gong Y, Huang Y (2015) Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal. Bioresour Technol 19:355–363

    Article  Google Scholar 

  • Uchimiya M, Chang S, Klasson KT (2011a) Screening biochars for heavy metal retention in soil: role of oxygen functional groups. J Hazard Mater 190(1–3):432–441

    Article  CAS  Google Scholar 

  • Uchimiya M, Klasson KT, Wartelle LH, Lima IM (2011b) Influence of soil properties on heavy metal sequestration by biochar amendment: 1. Copper sorption isotherms and the release of cations. Chemosphere 82(10):1431–1437

    Article  CAS  Google Scholar 

  • Uzoma KC, Inoue M, Andry H, Fujimaki H, Zahoor A, Nishihara E (2011) Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag 27(2):205–212

    Article  Google Scholar 

  • Van Vinh N, Zafar M, Behera SK, Park HS (2015) Arsenic (III) removal from aqueous solution by raw and zinc-loaded pine cone biochar: equilibrium, kinetics, and thermodynamics studies. Int J Environ Sci Technol 12(4):1283–1294

    Article  Google Scholar 

  • Wang S, Gao B, Zimmerman AR, Li Y, Ma L, Harris WG, Migliaccio KW (2015a) Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresour Technol 175:391–395

    Article  CAS  Google Scholar 

  • Wang X, Zhou W, Liang G, Song D, Zhang X (2015b) Characteristics of maize biochar with different pyrolysis temperatures and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil. Sci Total Environ 538:137–144

    Article  CAS  Google Scholar 

  • Watson VJ, Hatzell M, Logan BE (2015) Hydrogen production from continuous flow, microbial reverse-electrodialysis electrolysis cells treating fermentation wastewater. Bioresour Technol 195:51–66

    Article  CAS  Google Scholar 

  • Wu H, Lai C, Zeng G, Liang J, Chen J, Xu J, Dai J, Li X, Liu J, Chen M, Lu L, Hu L, Wan J (2016) The interactions of composting and biochar and their implications for soil amendment and pollution remediation: a review. Crit Rev Biotechnol:1–11

    Google Scholar 

  • Xiong Z, Shihong Z, Haiping Y (2013) Influence of NH3/CO2 modification on the characteristic of biochar and the CO2 capture. Bioenergy Res 6(4):1147–1153

    Article  CAS  Google Scholar 

  • Xu HJ, Wang XH, Li H, Yao HY, Su JQ, Zhu YG (2014) Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape. Environ Sci Technol 48(16):9391–9399

    Article  CAS  Google Scholar 

  • Yang GX, Jiang H (2014) Amino modification of biochar for enhanced adsorption of copper ions from synthetic wastewater. Water Res 48:396–405

    Article  CAS  Google Scholar 

  • Yang D, Yun GL, Sha BL (2016) Biochar to improve soil fertility. A review. Agron Sustain 36

    Google Scholar 

  • Yao Y, Gao B, Fang J, Zhang M, Chen H, Zhoub Y, Creamer AE, Sun Y, Yang L (2014) Characterization and environmental applications of clay-biochar composites. Chem Eng J 242:136–143

    Article  CAS  Google Scholar 

  • Yuan JH, Xu RK, Zhang H (2011) The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour Technol 102(3):3488–3497

    Article  CAS  Google Scholar 

  • Zhang M, Gao B, Varnoosfaderani S, Hebard A, Yao Y, Inyang M (2013) Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour Technol 130:457–462

    Google Scholar 

  • Zhao R, Coles N, Wu J (2015) Carbon mineralization following additions of fresh and aged biochar to an infertile soil. Catena 125:183–189

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Education Committee of Beijing, China (2015GJ-02), and the Special S&T Project on Treatment and Control of Water Pollution (2013ZX07201007-003) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhou, Y., Tian, Y., Zhang, L., Liu, Y., Feng, L. (2018). Application of Novel Biochars from Maize Straw Mixed with Fermentation Wastewater for Soil Health. In: Zakaria, Z. (eds) Sustainable Technologies for the Management of Agricultural Wastes. Applied Environmental Science and Engineering for a Sustainable Future. Springer, Singapore. https://doi.org/10.1007/978-981-10-5062-6_3

Download citation

Publish with us

Policies and ethics