Skip to main content

Metagenome of Rhizosphere and Endophytic Ecosystem

  • Chapter
  • First Online:
Book cover Understanding Host-Microbiome Interactions - An Omics Approach

Abstract

Microbes inhabit almost every corner of earth with highest known to be in soil. The diversity and activity of microbes have been found to be high in plants (as endophytes) and the surrounding ecosystem (rhizosphere). Within plant, the roots seem to harbour more diverse microbes than any other part. Among other parameters, plant species and its age drive the define distinctness of microbial communities within plant and in soil. In addition, soil type and its management also influence the microbial diversity. These microbes produce various compounds that influence plant growth, productivity, susceptibility and resistance to biotic and abiotic stresses. Hence, structural and functional analysis of microbial communities associated with plant is very much essential to understand the various processes that define their functions. Culture-based analysis of all existing microbes is difficult largely due to limited knowledge of their culture requirements in laboratory. Molecular finger printing and high throughput sequencing of DNA isolated directly from the niches have proved to be an effective alternative to culture-based analysis. In recent past, much of the metagenomics work has been dedicated to study soil microbes, but limited information is available regarding the endophytic microbes. The information obtained by culture-independent analysis of soil microbes can help understand interaction between plant, soil and resident microbes. This is expected to pave the way for effective modulation of soil biological processes by rhizosphere engineering. Endophytic bacteria have been shown to have several beneficial effects on their host plant. Hence, further improvement in crop protection, production and soil health can be achieved by modulating plant’s own processes through amending rhizospheric and endophytic microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelfattah A, Wisniewski M, Droby S et al (2016) Spatial and compositional variation in the fungal communities of organic and conventionally grown apple fruit at the consumer point-of-purchase. Hort Res 3:16047

    Article  Google Scholar 

  • Akhtyamova N (2013) Human pathogens-the plant and useful endophytes. J Med Microbiol Diagnosis 2:e121

    Article  Google Scholar 

  • Albrectsen BR, Bjorken L, Varad A et al (2010) Endophytic fungi in European aspen (Populus tremula) leaves: diversity, detection, and a suggested correlation with herbivory resistance. Fungal Divers 41:17–28

    Article  Google Scholar 

  • Alzubaidy H, Essack M, Malas TB et al (2016) Rhizosphere microbiome metagenomics of gray mangroves (Avicennia marina) in the Red Sea. Gene 576:626–636

    Article  CAS  PubMed  Google Scholar 

  • Amarante CVT, Steffens CA et al (2008) Yield and fruit quality of apple from conventional and organic production systems. Pesq Agrop Brasileira 43(3):333–340

    Article  Google Scholar 

  • Aparna K, Pasha MA, Rao DLN et al (2014) Organic amendments as ecosystem engineers: Microbial, biochemical and genomic evidence of soil health improvement in a tropical aridzone field site. Ecol Eng 71:268–277

    Article  Google Scholar 

  • Atamna-Ismaeel N, Finkel OM, Glaser F et al (2012) Microbial rhodopsins on leaf surfaces of terrestrial plants. Environ Microbiol 14:140–146

    Article  CAS  PubMed  Google Scholar 

  • Bacilio-Jimenez M (2003) Chemical characterization of root exudates from rice (Oryza sativa) and their effects on the chemotactic response of endophytic bacteria. Plant Soil 249:271–277

    Article  CAS  Google Scholar 

  • Badri DV, Zolla G, Bakker MG et al (2013) Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol 198:264–273

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Park SW, Weir TL et al (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  CAS  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG et al (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Balsanelli E, Serrato RV, De Baura VA et al (2010) Herbaspirillum seropedicae rfbB and rfbC genes are required for maize colonization. Environ Microbiol 12:2233–2244

    CAS  PubMed  Google Scholar 

  • Bashyal B (1999) Seimatoantlerium nepalense, an endophytic taxol producing coelomycete from Himalayan yew (Taxus wallichiana). Mycotaxon 72:33–42

    Google Scholar 

  • Behravesh CB, Williams IT, Tauxe RV (2012) Emerging foodborne pathogens and problems: expanding prevention efforts before slaughter or harvest. In: Institute of Medicine (US). Improving food safety through a one health approach: Workshop summary. Washington (DC): National Academies Press; 2012. A14

    Google Scholar 

  • Berg G, Grube M, Schloter M et al (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148

    PubMed  PubMed Central  Google Scholar 

  • Bever JD, Broadhurst LM, Thrall PH (2013) Microbial phylotype composition and diversity predicts plant productivity and plant-soil feedbacks. Ecol Lett 16:167–174

    Article  PubMed  Google Scholar 

  • Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 8:e56329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonaldi M, Chen X, Kunova A et al (2015) Colonization of lettuce rhizosphere and roots by tagged Streptomyces. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.00025

  • Brandl MT, Haxo AF, Bates AH (2004) Comparison of survival of Campylobacter jejuni in the phyllosphere with that in the rhizosphere of spinach and radish plants. Appl Environ Microbiol 70:1182–1189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckley DH, Schmidt TM (2003) Diversity and dynamics of microbial communities in soil from agro-ecosystem. Environ Microbiol 5:441–452

    Article  PubMed  Google Scholar 

  • Bulgarelli D, Rott M, Schlaeppi K et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95

    Article  CAS  PubMed  Google Scholar 

  • Carbonetto B, Rascovan N, Alvarez R et al (2014) Structure, composition and metagenomic profile of soil microbiomes associated to agricultural land use and tillage systems in argentine pampas. PLoS One 9(6):e99949

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carlos HSG, Luc FM, Jean L et al (2011) Exopolysaccharide production is required for biofilm formation and plant colonization by the nitrogen-fixing endophyte Gluconacetobacter diazotrophicus. MPMI 24:1448–1458

    Article  CAS  Google Scholar 

  • Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41:252–263

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Pachter L (2005) Bioinformatics for whole-genome shotgun sequencing of microbial communities. PLoS Comp Biol 1(2):e24

    Article  CAS  Google Scholar 

  • Chen L, Zhang QY, Jia M et al (2016) Endophytic fungi with antitumor activities: Their occurrence and anticancer compounds. Crit Rev Microbiol 42:454–473

    CAS  PubMed  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R et al (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Jiang Y, Wu Y et al (2016) Soil nitrogen status modifies rice root response to nematode-bacteria interactions in the rhizosphere. PLoS One 11:e0148021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chi F, Shen SH, Cheng HP et al (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71:7271–7278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Compant S, Mitter B, Colli-Mull JG et al (2011) Endophytes of grapevine flowers, berries and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62:188–197

    Article  PubMed  Google Scholar 

  • Compant S, Reiter B, Sessitsch A et al (2005) Endophytic colonization of Vitis vinifera L. by plant growth promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conn VM, Franco CM (2004) Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Appl Environ Microbiol 70:1787–1794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa PB, Granada CE, Ambrosini A et al (2014) A model to explain plant growth promotion traits: a multivariate analysis of 2,211 bacterial isolates. PLoS One 9(12):e116020

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Curtis TP, Sloan WT, Scannell JW (2002) Estimating prokaryotic diversity and its limits. Proc Natl Acad Sci U S A 99:10494–10499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Amico M, Frisullo S, Cirulli M (2008) Endophytic fungi occurring in fennel, lettuce, chicory, and celery-commercial crops in Southern Italy. Mycol Res 112:100–107

    Article  PubMed  Google Scholar 

  • Danielsen L, Thurmer A, Meinicke P et al (2012) Fungal soil communities in a young transgenic poplar plantation form a rich reservoir for fungal root communities. Ecol Evol 2:1935–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Souza JT, de Boer M, de Waard P et al (2003) Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl Environ Microbiol 69:7161–7172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Weert S, Vermeiren H, Mulders IH et al (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant-Microbe Interact 15:1173–1180

    Article  PubMed  Google Scholar 

  • DeAngelis KM, Brodie EL, DeSantis TZ et al (2009) Selective progressive response of soil microbial community to wild oat roots. ISME J 3:168–178

    Article  CAS  PubMed  Google Scholar 

  • Deering AJ, Mauer LJ, Pruitt RE (2012) Internalization of E. coli O157:H7 and Salmonella spp. in plants: a review. Food Res Int 45:567–575

    Article  Google Scholar 

  • Ding T, Palmer MW, Melcher U (2013) Community terminal restriction fragment length polymorphisms reveal insights into the diversity and dynamics of leaf endophytic bacteria. BMC Microbiol 13:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Downing KJ, Leslie G, Thomson JA (2000) Biocontrol of the sugarcane borer Eldana saccharina by expression of the Bacillus thuringiensis cry1Ac7 and Serratia marcescens chiA genes in sugarcane-associated bacteria. Appl Environ Microbiol 66:2804–2810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudeja SS, Giri R (2014) Beneficial properties, colonization, establishment and molecular diversity of endophytic bacteria in legume and non-legume. Afr J Microbiol Res 8:1562–1572

    Article  Google Scholar 

  • Elasri M, Delorme S, Lemanceau P (2001) Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soilborne Pseudomonas spp. Appl Environ Microbiol 67:1198–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fakruddin M, Mannan KSB (2012) Next generation sequencing technologies-principles and prospects. Res Rev Biosci 6(9):240–247

    Google Scholar 

  • Ferrando L, Manay JF, Scavino AF (2012) Molecular and culture-dependent analyses revealed similarities in the endophytic bacterial community composition of leaves from three rice (Oryza sativa) varieties. FEMS Microbiol Ecol 80:696–708

    Article  CAS  PubMed  Google Scholar 

  • Firakova S, Sturdikova M, Muckova M (2007) Bioactive secondary metabolites produced by microorganisms associated with plants. Biologia 62:251–257

    Article  CAS  Google Scholar 

  • Fisher PJ, Petrini O, Petrini LE et al (1994) Fungal endophytes from the leaves and twigs of Quercus ilex L. from England, Majorca and Switzerland. New Phytol 127:133–137

    Article  Google Scholar 

  • Foster RC (1988) Microenvironments of soil microorganisms. Biol Fertil Soils 6:189–203

    Article  Google Scholar 

  • Fuentes-Ramirez LE, Caballero-Mellado J, Sepulveda J et al (1999) Colonization of sugarcane by Acetobacter diazotrophicus is inhibited by high N-fertilization. FEMS Microbiol Lett 29:117–128

    Article  CAS  Google Scholar 

  • Gaiero JR, McCall CA, Thompson KA (2013) Inside the root microbiome: bacterial root endophytes and plant growth promotion. Am J Bot 100:1738–1750

    Article  PubMed  Google Scholar 

  • Gamalero E, Lingua G, Caprì FG (2004) Colonization pattern of primary tomato roots by Pseudomonas fluorescens A6RI characterized by dilution plating, flow cytometry, fluorescence, confocal and scanning electron microscopy. FEMS Microbiol Ecol 48:79–87

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Teplitski M (2003) Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol Plant-Microbe Interact 16:827–834

    Article  CAS  PubMed  Google Scholar 

  • Garcia de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47(5):404–411

    Article  CAS  PubMed  Google Scholar 

  • Gazis R, Chaverri P (2010) Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol 3:240–254

    Article  Google Scholar 

  • Gehlot P, Singh SK, Pathak R (2012) Morphometric and molecular characterization of fungus Pestalotiopsis using nuclear ribosomal DNA analysis. J Environ Biol 33:897–901

    PubMed  Google Scholar 

  • Germida JJ, Siciliano SD (2001) Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol Fertil Soils 33:410–415

    Article  Google Scholar 

  • Ghimire SR, Charlton ND, Bell JD et al (2011) Biodiversity of fungal endophyte communities inhabiting switchgrass (Panicum virgatum L.) growing in the native tallgrass prairie of northern Oklahoma. Fungal Divers 47:19–27

    Article  Google Scholar 

  • Giri R, Dudeja SS (2013) Host specificity of plant endophytic bacterial interactions: root colonization in liquid medium. J. Microbiol Res 1(6):75–82

    Google Scholar 

  • Gonod LV, Chenu C, Soulas G (2003) Spatial variability of 2,4- dichlorophenoxyacetic acid (2,4-D) mineralisation potential at a millimetre scale in soil. Soil Biol Biochem 35(3):373–382

    Article  CAS  Google Scholar 

  • Govindasamy V, Franco CMM, Gupta VVSR (2014) Endophytic actinobacteria: diversity and ecology. Adv Endophytic Res:27–59

    Google Scholar 

  • Grayston SJ, Wang S, Campbell CD et al (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378

    Article  CAS  Google Scholar 

  • Gregory PJ (2006) Plant roots: growth, activity and interaction with soils. Blackwell, London

    Book  Google Scholar 

  • Haichar FZ, Marol C, Berge O et al (2008) Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221–1230

    Article  CAS  PubMed  Google Scholar 

  • Hallman J, Rodriguez-Kabana R, Kloepper JW (1999) Chitin-mediated changes in bacterial communities of the soil, rhizosphere and within roots of cotton in relation to nematode control. Soil Biol Biochem 31:551–560

    Article  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF et al (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:245–249

    Article  Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G et al (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hardoim PR, van Overbeek LS, Elsas JD (2008) Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol 16(10):463–471

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Rothballer M, Schmid M (2008) Lorenz H: a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14

    Article  CAS  Google Scholar 

  • He Z, Deng Y, Van Nostrand JD et al (2010) GeoChip 3.0 as a high-throughput tool for analyzing microbial community structure, composition and functional activity. ISME J 4:1167–1179

    Article  CAS  PubMed  Google Scholar 

  • Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97:8859–8873

    Article  CAS  PubMed  Google Scholar 

  • Hiltner L (1904) Uber neure erfahrungen und probleme auf dem Gebiet der Boden bakteriologie und unter besondere Beruck-sichtigung der grundungung und Bracke. Arbeiten der Deutschen Landwirtschaft Gesellschaft 98:59–78

    Google Scholar 

  • Hjort K, Presti I, Elvang A et al (2014) Bacterial chitinase with phytopathogen control capacity from suppressive soil revealed by functional metagenomics. Appl Microbiol Biotechnol 98(6):2819–2828

    Article  CAS  PubMed  Google Scholar 

  • Holben WE, Jansson JK, Chelm BK et al (1988) DNA probe method for detection of specific microorganisms in the soil bacterial community. Appl Environ Microbiol 54:703–711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horner-Devine MC, Leibold MA, Smith VH et al (2003) Bacterial diversity patterns along a gradient of primary productivity. Ecol Lett 6:613–622

    Article  Google Scholar 

  • Humphris SN, Bengough AG, Griffiths BS et al (2005) Root cap influences root colonization by Pseudomonas fluorescens SBW25 on maize. FEMS Microbiol Ecol 54:123–130

    Article  CAS  PubMed  Google Scholar 

  • Hussain Q, Pan GX, Liu YZ et al (2012) Microbial community dynamics and function associated with rhizosphere over periods of rice growth. Plant Soil Environ 58(2):55–61

    CAS  Google Scholar 

  • Ikeda S, Kaneko T, Okubo T et al (2009) Development of a bacterial cell enrichment method and its application to the community analysis in soybean stems. Microb Ecol 58(4):703–714

    Article  CAS  PubMed  Google Scholar 

  • Ikeda S, Sasaki K, Okubo T et al (2014) Low nitrogen fertilization adapts rice root microbiome to low nutrient environment by changing biogeochemical functions. Microbes Environ 29:50–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Islam MR, Sultana T, Melvin, et al (2012) Comparisons of direct extraction methods of microbial DNA from different paddy soils. Saudi J Biol Sci 19:337–342

    Google Scholar 

  • James EK, Gyaneshwar P, Manthan N et al (2002) Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z67. Mol Plant-Microbe Interact 15:894–906

    Article  CAS  PubMed  Google Scholar 

  • Janssen PH (2006) Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72(3):1719–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang S, Duan JA, Tao JH et al (2010) Ecological distribution and elicitor activities of endophytic fungi in Changium smyrnioides. Chin Tradit Herb Drug 1:121–125

    Google Scholar 

  • Jiao JY, Wang HX, Zeng Y et al (2006) Enrichment for microbes living in association with plant tissues. J Appl Microbiol 100(4):830–837

    Article  PubMed  Google Scholar 

  • Johnston-Monje D, Raizada MN (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One 6:e20396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur R, Minhas PS, Jain PC et al (2008) Geo-spatial analysis of land water resource degradation in two economically contrasting agricultural regions adjoining national capital territory (Delhi). Environ Monit Assess. doi:10.1007/s10661-008-0378-3

  • Kieft TL, Soroker E, Firestone MR (1987) Microbial biomass response to a rapid change increase in water potential when dry soil is wetted. Soil Biol Biochem 19:119–126

    Article  Google Scholar 

  • Kirk JL, Beaudette LA, Hart M et al (2004) Methods of studying soil microbial diversity. J Microbiol Methods 58:169–188

    Article  CAS  PubMed  Google Scholar 

  • Knee EM, Gong FC, Gao M et al (2001) Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source. Mol Plant Microbe Interact14:775–784

    Google Scholar 

  • Knietsch A, Bowien S, Whited G et al (2003) Identification and characterization of coenzyme B12-dependent glycerol dehydratase- and diol dehydratase-encoding genes from metagenomic DNA libraries derived from enrichment cultures. Appl Environ Microbiol 69:3048–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koberl M, Müller H, Ramadan EM et al (2011) Desert farming benefits from microbial potential in arid soils and promotes diversity and plant health. PLoS One 6(9):e24452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kovtunovych G, Lar O, Kamalova S et al (1999) Correlation between pectate lyase activity and ability of diazotrophic Klebsiella oxytoca VN13 to penetrate into plant tissues. Plant Soil 215:1–6

    Article  CAS  Google Scholar 

  • Krishnaraj PU, Pasha MA (2017) Metagenomics: concepts, tools and application. In: Kumar P, Bhola R, GJ N Govi (ed) Environmental Science and Engineering. Studium press, New Delhi (In Press)

    Google Scholar 

  • Kuklinsky-Sobral J, Araujo WL, Mendes R (2004) Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol 6:1244–1251

    Article  CAS  PubMed  Google Scholar 

  • Kutter S, Hartmann A, Schmid M (2006) Colonization of barley (Hordeum vulgare) with Salmonella enterica and Listeria spp. FEMS Microbiol Ecol 56:262–271

    Article  CAS  PubMed  Google Scholar 

  • Lakay FM, Botha A, Prior BA (2007) Comparative analysis of environmental DNA extraction and purification methods from different humic acid-rich soils. J Appl Microbiol 102:265–273

    Article  CAS  PubMed  Google Scholar 

  • Lazcano C, Gomez-Brandon M, Revilla P et al (2013) Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function: a field study with sweet corn. Biol Fertil Soils 49:723–733

    Article  CAS  Google Scholar 

  • Link HF (1809) Observationes in ordines plantarum naturales, dissertatio prima, complectens anandrarum ordines Epiphytas, Mucedines. Gastromycos et Fungos. Der Gesellschaft Naturforschender Freunde zu Berlin, Berlin

    Google Scholar 

  • Liu B, Tu C, Hu S et al (2007) Effects of organic, sustainable and conventional management strategies in grower fields on soil physical, chemical and biological factors and the incidence of southern blight. Appl Soil Ecol 37:202–214

    Article  Google Scholar 

  • Liu M, Hu F, Chen X et al (2009) Organic amendments with reduced chemical fertilizer promote soil microbial development and nutrient availability in a subtropical paddy field: the influence of quantity, type and application time of organic amendments. Appl Soil Ecol 42:166–175

    Article  Google Scholar 

  • Liu X, Zhang J, Gu T et al (2014) Microbial community diversities and taxa abundances in soils along a seven-year gradient of potato monoculture using high throughput pyrosequencing approach. PLoS One 9(1):e86610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lucero ME, Barrow JR, Osuna P et al (2008) Enhancing native grass productivity by cocultivating with endophyte-laden calli. Rangel Ecol Manag 61:124–130

    Article  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  CAS  PubMed  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH et al (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmoudi N, Slater RR (2011) Fulthorpe Comparison of commercial DNA extraction kits for isolation and purification of bacterial and eukaryotic DNA from PAH-contaminated soils. Can J Microbiol 57:623–628

    Article  CAS  PubMed  Google Scholar 

  • Mandimba G, Heulin T, Bally R et al (1986) Chemotaxis of free-living nitrogen-fixing bacteria towards maize mucilage. Plant Soil 90:129–139

    Article  Google Scholar 

  • Mark GL, Dow JM, Kiely PD et al (2005) Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe-plant interactions. Proc Natl Acad Sci U S A 102:17454–17459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maron PA, Mougel C, Ranjard L (2011) Soil microbial diversity: methodological strategy, spatial overview and functional interest. C R Biol 334:403–411

    Article  PubMed  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I et al (2011) Deciphering the rhizosphere microbiome for disease suppressive bacteria. Science 332:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Meng Y, Li Y, Galvani CD et al (2005) Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. J Bacteriol 187:5560–5567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercado-Blanco J, Prieto P (2012) Bacterial endophytes and root hairs. Plant Soil 361:301–306

    Article  CAS  Google Scholar 

  • Miethling R, Wieland G, Backhaus H et al (2000) Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microb Ecol 41:43–56

    Article  Google Scholar 

  • Mirete S, Mora-Ruiz MR, Lamprecht-Grandío M et al (2015) Salt resistance genes revealed by functional metagenomics from brines and moderate-salinity rhizosphere within a hypersaline environment. Front Microbiol 6:1121

    Article  PubMed  PubMed Central  Google Scholar 

  • Miyamoto T, Kawahara M, Minamisawa K (2004) Novel endophytic nitrogen-fixing Clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis. Appl Environ Microbiol 70(11):6580–6586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mougel C, Offre P, Ranjard L et al (2006) Dynamic of the genetic structure of bacterial and fungal communities at different developmental stages of Medicago truncatula. cv. Jemalong line J5. New Phytol 170:165–175

    Article  CAS  PubMed  Google Scholar 

  • Nam YJ, Kim H, Lee JH et al (2015) Metagenomic analysis of soil fungal communities on Ulleungdo and Dokdo Islands. J Gen Appl Microbiol 61:67–74

    Article  CAS  PubMed  Google Scholar 

  • Natvig EE, Ingham SC, Ingham BH (2002) Salmonella enterica serovar Typhimurium and Escherichia coli contamination of root and leaf vegetables grown in soils with incorporated bovine manure. Appl Environ Microbiol 68:2737–2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naveed M, Qureshi MA, Zahir ZA et al (2015) L-Tryptophan-dependent biosynthesis of indole-3-acetic acid (IAA) improves plant growth and colonization of maize by Burkholderia phytofirmans PsJN. Ann Microbiol 65:1391–1389

    Article  CAS  Google Scholar 

  • Nielsen TH, Sorensen D, Tobiasen C et al (2002) Antibiotic and biosurfactant properties of cycliclipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl Environ Microbiol 68:3416–3423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nikolic B, Schwab H, Sessitsch A (2011) Metagenomic analysis of the 1-aminocyclopropane-1-carboxylate deaminase gene (acdS) operon of an uncultured bacterial endophyte colonizing Solanum tuberosum L. Arch Microbiol 193(9):665–676

    Article  CAS  PubMed  Google Scholar 

  • Nunan N, Wu K, Young IM et al (2003) Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil. FEMS Microbiol Ecol 44:203–215

    Article  CAS  PubMed  Google Scholar 

  • Nunes da Rocha U, van Overbeek L, van Elsas JD (2009) Exploration of hitherto-uncultured bacteria from the rhizosphere. FEMS Microbiol Ecol 69:313–328

    Article  CAS  Google Scholar 

  • Ogram A, Sayler GS, Barkay T (1987) The extraction and purification of microbial DNA from sediments. J Microbiol Methods 7:57–66

    Article  CAS  Google Scholar 

  • Orr J, Hurek T, Reinhold-Hurek B (1998) Type IV pili are involved in plant-microbe and fungus microbe interactions. Mol Microbiol 30:7–17

    Article  Google Scholar 

  • Partida-Martínez LP, Heil M (2011) The microbe-free plant: fact or artifact? Front Plant Sci 2:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Pasha MA, Bhat S, Krishnaraj PU et al (2015) Soil bacterial diversity analysis of cotton field under organic and inorganic management using DGGE. J Pure. Appl Microbiol 9(1):631–636

    CAS  Google Scholar 

  • Patrick DS, Handelsman J (2005) Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol 6:229–234

    Article  CAS  Google Scholar 

  • Paulsen IT, Press CM, Ravel J et al (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878

    Article  CAS  PubMed  Google Scholar 

  • Petrini O (1991) Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer-Verlag, New York, pp 179–197

    Chapter  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P et al (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Tan C, Lin J et al (2016) EcoExpress-highly efficient construction and expression of multicomponent protein complexes in Escherichia coli. ACS Synth Biol 5(11):1239–1246

    CAS  PubMed  Google Scholar 

  • Raaijmakers JM, Vlami M, de Souza JT (2002) Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek 81:537–547

    Article  CAS  PubMed  Google Scholar 

  • Rasche F, Velvis H, Zachow C et al (2006) Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection. J Appl Ecol 43:555–566

    Article  CAS  Google Scholar 

  • Rascovan N, Carbonetto B, Perrig D, Díaz M, Canciani W, Abalo M, et al. (2016) Integrated Analysis of Root Microbiomes of Soybean and Wheat from Agricultural Fields. Scientific Reports. 6:28084

    Google Scholar 

  • Reinhold-Hurek B, Hurek T (1998) Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: Identification, localization, and perspectives to study their function. Crit Rev Plant Sci 17:29–54

    Article  Google Scholar 

  • Reinhold-Hurek B, Hurek T (2011) Living inside plants: bacterial endophytes. Curr Opin Plant Biol 14:435–443

    Article  PubMed  Google Scholar 

  • Reinhold-Hurek B, Maes T, Gemmer S et al (2006a) An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus sp. strain BH72. Mol Plant-Microbe Interact 19:181–188

    Article  CAS  PubMed  Google Scholar 

  • Reinhold-Hurek B, Maes T, Gemmer S et al (2006b) An endoglucanase is involved in infection of rice roots by the not-cellulose-metabolizing endophyte Azoarcus sp. strain BH72. Mol Plant-Microbe Interact 19:181–188

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues KF (1994) The foliar fungal endophytes of the Amazonian palm Euterpe oleracea. Mycologia 86:376–385

    Article  Google Scholar 

  • Rodriguez RJ, White JFJ, Arnold AE et al (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  CAS  PubMed  Google Scholar 

  • Rondon MR, August PR, Bettermann AD et al (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenblueth M, Martinez-Romero E (2004) Rhizobium etli maize populations and their competitiveness for root colonization. Arch Microbiol 181(5):337–344

    Article  CAS  PubMed  Google Scholar 

  • Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837

    Article  CAS  PubMed  Google Scholar 

  • Rousk J, Baath E, Brookes PC et al (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME 4:134–151

    Article  Google Scholar 

  • Rudrappa T, Czymmek K, Pare PW et al (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryan RP, Germaine K, Franks A et al (2008) Bacterial endophytes: recent development and applications. FEMS Microbiol Lett 278:1–9

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen K, Wäli P, Helander M et al (2004) Evolution of endophyte-plant symbioses. Trends Plant Sci 9:275–280

    Article  CAS  PubMed  Google Scholar 

  • Schardl CL, Leuchtmann A, Spiering MJ et al (2004) Symbioses of grasses with seedborne fungal endophytes. Annu Rev Plant Biol 55:315–340

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310

    Article  CAS  PubMed  Google Scholar 

  • Schneegurt MA, Dore S, Kulpa Jr.CF (2003) Direct extraction of DNA from soils for studies in microbial ecology. Curr Issues Mol Biol 5:1–8

    Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In Microbial root endophytes Schulz, Barbara JE, Boyle, Christine JC, Sieber Thomas N (Eds.). Springer-Verlag. pp 1–13

    Google Scholar 

  • Seghers D, Wittebolle L, Top EM et al (2004) Impact of agricultural practices on the Zea mays L. endophytic community. Appl Environ Microbiol 70(3):1475–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sessitsch AP, Haroim A, Weilharter A et al (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interact 25:28–36

    Article  CAS  PubMed  Google Scholar 

  • Shamseldin A, El-Sheikh MH, Hassan HAS et al (2010) Microbial bio-fertilization approaches to improve yield and quality of Washington navel orange and reducing the survival of nematode in the soil. J Am Sci 6:264–271

    Google Scholar 

  • Sieber TN (2007) Endophytic fungi in forest trees: are they mutualists? Fungal Biol Rev 21:75–89

    Article  Google Scholar 

  • Smalla K, Wieland G, Buchner A et al (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environ Microbiol 67:4742–4751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smit E, Leeflang P, Gommans S et al (2001) Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl Environ Microbiol 67:2284–2291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith KP, Goodman RM (1999) Host variation for interaction with beneficial plant associated microbes. Annu Rev Phytopathol 37:473–491

    Article  CAS  PubMed  Google Scholar 

  • Song S, Otkur M, Zhang Z et al (2007) Isolation and characterization of endophytic microorganisms in Glycyrrhiza inflat Bat. from Xinjiang. Microbiology 5:867–870

    Google Scholar 

  • Soupir ML, Mostaghimi S, Yagow ER et al (2006) Transport of fecal bacteria from poultry litter and cattle manure applied to pasture land. Water Air Soil Pollut 169:125–136

    Article  CAS  Google Scholar 

  • Souza RC, Cantao ME, Vasconcelos ATR et al (2013a) Soil metagenomics reveals differences under conventional and no-tillage with crop rotation or succession. Appl Soil Ecol 72:49–61

    Article  Google Scholar 

  • Souza SA, Xavier AA, Costa MR et al (2013b) Endophytic bacterial diversity in banana ‘Prata Ana’ (Musa spp.) roots. Genet Mol Biol 36(2):252–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparling GP (1997) Soil microbial biomass, activity and nutrient cycling as indicators of soil health. In: Pankhurst CE, Doube BM, Gupta VVSR (eds) Biological indicators of soil health. CAB International, Wallingford, UK, pp 97–119

    Google Scholar 

  • Stark C, Condron L, Stewart A et al (2007) Influence of organic and mineral amendments on microbial soil properties and processes. Appl Soil Ecol 35:79–93

    Article  Google Scholar 

  • Stierle A, Strobel G, Stierle D et al (1995) The search for a taxol-producing microorganism among the endophytic fungi of the Pacific yew, Taxus brevifolia. J Nat Prod 58:1315–1324

    Article  CAS  PubMed  Google Scholar 

  • Stone JK, Bacon CW, White J (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW, White J (eds) Microbial endophytes. Taylor & Francis, New York, pp 3–29

    Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000) Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Sugiyama A, Ueda Y, Zushi T et al (2014) Changes in the bacterial community of soybean rhizospheres during growth in the field. PLoS One 9:e100709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun L, Qiu F, Zhang X et al (2008) Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol 55:415–424

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Guo LD, Hyde KD (2011) Community composition of endophytic fungi in Acer truncatum and their role in decomposition. Fungal Divers 47:85–95

    Article  Google Scholar 

  • Suryanarayanan TS, Thirunavukkarasu N, Hariharan GN et al (2005) Occurrence of non-obligate microfungi inside lichen thalli. Sydowia 57:119–129

    Google Scholar 

  • Sylvia A, Carlos M, Luc R et al (2013) The bacterial superoxide dismutase and glutathione reductase are crucial for endophytic colonization of rice roots by Gluconacetobacter diazotrophicus PAL5. MPMI 26:937–945

    Article  CAS  Google Scholar 

  • Tan Z, Hurek T, Reinhold-Hurek B (2003) Effect of N-fertilization, plant genotype and environmental conditions on nifH gene pools in roots of rice. Environ Microbiol 5:1009–1015

    Article  CAS  PubMed  Google Scholar 

  • Taylor LL, Leake JR, Quirk J et al (2009) Biological weathering and the long-term carbon cycle: integrating mycorrhizal evolution and function into the current paradigm. Geobiology 7:171–191

    Article  CAS  PubMed  Google Scholar 

  • Tejesvi MV, Picart P, Kajula M et al (2016) Appl Microbiol Biotechnol 100:9283

    Article  CAS  PubMed  Google Scholar 

  • Teplitski M (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant-Microbe Interact 13:637–648

    Article  CAS  PubMed  Google Scholar 

  • Tkacz A, Poole P (2015) Role of root microbiota in plant productivity. J Exp Bot 66(8):2167–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torsvik V, Ovreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  CAS  PubMed  Google Scholar 

  • Tsai Y, Olson BH (1991) Rapid method for direct extraction of DNA from soil and sediment. Appl Environ Microbiol 57:1070–1074

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsurumaru H, Okubo T, Okazaki K et al (2015) Metagenomic analysis of the bacterial community associated with the taproot of sugar beet. Microbes Environ 30(1):63–69

    Article  PubMed  PubMed Central  Google Scholar 

  • Turnbull GA, Morgan JAW, Whipps JM et al (2001) The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and in the attachment and colonization of wheat roots. FEMS Microbiol Ecol 36:21–31

    Article  CAS  PubMed  Google Scholar 

  • Tyson GW, Lo I, Baker BJ et al (2005) Genome-directed isolation of the key nitrogen fixer Leptospirillum ferrodiazotrophum sp. nov. from an acidophilic microbial community. Appl Environ Microbiol 71:6319–6324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Unno Y, Shinano T (2013) Metagenomic analysis of the rhizosphere soil microbiome with respect to phytic acid utilization. Microbes Environ 28:120–127

    Article  PubMed  Google Scholar 

  • Uren NC (2000) Types, amount, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 19–40

    Google Scholar 

  • Uroz S, Ioannidis P, Lengelle J et al (2013) Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a norway spruce plantation. PLoS One 8(2):e55929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Diepeningen AD, de Vos OJ, Korthals GW et al (2006) Effects of organic versus conventional management on chemical and biological parameters in agricultural soils. Appl Soil Ecol 31:120–135

    Article  Google Scholar 

  • Verma SC, Singh A, Chowdhury SP et al (2004) Endophytic colonization ability of two deep-water rice endophytes, Pantoea sp. and Ochrobactrum sp. using green fluorescent protein reporter. Biotechnol Lett 26:425–429

    Article  CAS  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widmer F, Hartmann M, Frey B et al (2006) A novel strategy to extract specific phylogenetic sequence information from community T-RFLP. J Microbiol Methods 66:512–520

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Han T, Li W et al (2013) Geographic and tissue influences on endophytic fungal communities of Taxus chinensis var. mairei in China. Curr Microbiol 66:40–48

    Article  CAS  PubMed  Google Scholar 

  • Wu LY, Thompson DK, Li GS et al (2001) Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl Environ Microbiol 67:5780–5790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu T, Chellemi DO, Graham JH et al (2008) Comparison of soil bacterial communities under diverse agricultural land management and crop production practices. Microb Ecol 55:293–310

    Article  PubMed  Google Scholar 

  • Xu Z, Hansen MA, Hansen LH et al (2014) Bioinformatic approaches reveal metagenomic characterization of soil microbial community. PLoS One 9(4):e93445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan Z, Druzhinina IS, Labbe J et al (2016) Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Sci Rep 6:32467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zakria M, Njoloma J, Saeki Y (2007) Colonization and nitrogen-fixing ability of Herbaspirillum sp. strain B501 gfp1 and assessment of its growth-promoting ability in cultivated rice. Microbes Environ 22:197–206

    Article  Google Scholar 

  • Zolla G, Badria DV, Bakker MG et al (2013) Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Appl Soil Ecol 68:1–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. U. Krishnaraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Krishnaraj, P.U., Pasha, M.A. (2017). Metagenome of Rhizosphere and Endophytic Ecosystem. In: Singh, R., Kothari, R., Koringa, P., Singh, S. (eds) Understanding Host-Microbiome Interactions - An Omics Approach. Springer, Singapore. https://doi.org/10.1007/978-981-10-5050-3_9

Download citation

Publish with us

Policies and ethics