Skip to main content

Uncultivated Lineages and Host–Microbe Interaction in Saline Environment

  • Chapter
  • First Online:
Understanding Host-Microbiome Interactions - An Omics Approach

Abstract

The culture-independent approaches can contribute to untold properties of microorganisms. The host and microbe interactions explored through the metagenomics, metatranscriptomics, and metaproteomics approaches reveal the function of the ecosystem. The extremophilic communities can be detected by screening of genes, proteins, and enzymes directly from the environmental samples based on the marker genes and reference species. Evaluation of the host–microbe interaction based on models and libraries generates hidden metabolic pathways to explore the types of interactions. The identification of the unfamiliar microbial species based on functions and sequences of the host–microbe interaction opens new arena of the adaptation in extreme ecosystems, including saline habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abulencia CB, Wyborski DL, Garcia JA et al (2006) Environmental whole-genome amplification to access microbial populations in contaminated sediments. Appl Environ Microbiol 72(5):3291–3301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amann R (2000) Who is out there? Microbial aspects of biodiversity. Syst Appl Microbiol 23(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Amin SA, Hmelo LR, Van Tol HM et al (2015) Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature 522(7554):98–101

    Google Scholar 

  • Behzad H, Ibarra MA, Mineta K et al (2016) Metagenomic studies of the Red Sea. Gene 576(2):717–723

    Article  CAS  PubMed  Google Scholar 

  • Bejerano-Sagie M, Xavier KB (2007) The role of small RNAs in quorum sensing. Curr Opin Microbiol 10(2):189–198

    Article  CAS  PubMed  Google Scholar 

  • Beninca E, Huisman J, Heerkloss R et al (2008) Chaos in a long-term experiment with a plankton community. Nature 451(7180):822–825

    Google Scholar 

  • Benndorf D, Balcke GU, Harms H et al (2007) Functional metaproteome analysis of protein extracts from contaminated soil and groundwater. The ISME journal 1(3):224–234

    Google Scholar 

  • Benlloch S, López-López A, Casamayor EO et al (2002) Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol 4(6):349–360

    Article  PubMed  Google Scholar 

  • Bentley DR (2006) Whole-genome re-sequencing. Curr Opin Genet Dev 16(6):545–552

    Article  CAS  PubMed  Google Scholar 

  • Bertrand H, Poly F, Lombard N et al (2005) High molecular weight DNA recovery from soils prerequisite for biotechnological metagenomic library construction. J Microbiol Methods 62(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Bosch TC, McFall-Ngai MJ (2011) Metaorganisms as the new frontier. Zoology 114(4):185–190

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao H, Zhang W, Wang Y et al (2015) Microbial community changes along the active seepage site of one cold seep in the Red Sea. Front Microbiol 6:739

    PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter-Boggs L, Kennedy AC, Reganold JP (1998) Use of phospholipid fatty acids and carbon source utilization patterns to track microbial community succession in developing compost. Appl Environ Microbiol 64(10):4062–4064

    CAS  PubMed  PubMed Central  Google Scholar 

  • Case RJ, Boucher Y, Dahllöf I et al (2007) Use of 16S rRNA and rpoB genes as molecular markers for microbial ecology studies. Appl Environ Microbiol 73(1):278–288

    Article  CAS  PubMed  Google Scholar 

  • Chaffron S, Rehrauer H, Pernthaler J et al (2010) A global network of coexisting microbes from environmental and whole-genome sequence data. Genome Res 20(7):947–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordero OX, Datta MS (2016) Microbial interactions and community assembly at microscales. Curr Opin Microbiol 31:227–234

    Article  PubMed  PubMed Central  Google Scholar 

  • Cowan DA, Ramond JB, Makhalanyane TP et al (2015) Metagenomics of extreme environments. Curr Opin Microbiol 25:97–102

    Article  CAS  PubMed  Google Scholar 

  • Dakos V, Scheffer M, Van Nes EH et al (2008) Slowing down as an early warning signal for abrupt climate change. Proc Natl Acad Sci U S A 105:14308–14312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3(6):470–478

    Article  CAS  PubMed  Google Scholar 

  • Dillon JG, Carlin M, Gutierrez A, Nguyen V et al (2013) Patterns of microbial diversity along a salinity gradient in the Guerrero Negro solar saltern, Baja CA Sur, Mexico. Front Microbiol p. 4

    Google Scholar 

  • Dinsdale EA, Edwards RA, Hall D et al (2008) Functional metagenomic profiling of nine biomes. Nature 452:629–632

    Article  CAS  PubMed  Google Scholar 

  • Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312(5771):212–217

    Article  CAS  PubMed  Google Scholar 

  • Doolittle WF, Zhaxybayeva O (2010) Metagenomics and the units of biological organization. BioScience 60(2):102–112

    Article  Google Scholar 

  • Dumont MG, Pommerenke B, Casper P (2013) Using stable isotope probing to obtain a targeted metatranscriptome of aerobic methanotrophs in lake sediment. Environ Microbiol Rep 5(5):757–764

    CAS  PubMed  Google Scholar 

  • Edwards RA, Rodriguez-Brito B, Wegley L et al (2006) Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7(1):57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faust K, Lahti L, Gonze D et al (2015) Metagenomics meets time series analysis: unraveling microbial community dynamics. Curr Opin Microbiol 25:56–66

    Google Scholar 

  • Fernández AB, Vera-Gargallo B, Sánchez-Porro C (2014a) Comparison of prokaryotic community structure from Mediterranean and Atlantic saltern concentrator ponds by a metagenomic approach. Front Microbiol 5:196

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernández AB, Ghai R, Martin-Cuadrado AB et al (2014b) Prokaryotic taxonomic and metabolic diversity of an intermediate salinity hypersaline habitat assessed by metagenomics. FEMS Microbiol Ecol 88(3):623–635

    Article  PubMed  CAS  Google Scholar 

  • Floyd MM, Tang J, Kane M, Emerson D (2005) Captured diversity in a culture collection: case study of the geographic and habitat distributions of environmental isolates held at the American Type Culture Collection. Appl Environ Microbiol 71(6):2813–2823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franzosa EA, Hsu T, Sirota-Madi A et al (2015) Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat Rev Microbiol 13(6):360–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao ZM, Wang Y, Tian RM et al (2014) Symbiotic adaptation drives genome streamlining of the cyanobacterial sponge symbiont “Candidatus Synechococcus spongiarum”. MBio 5(2):e00079-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Garcia-Heredia I, Martin-Cuadrado AB, Mojica FJ, Santos F et al (2012) Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses. PLoS One 7(3):e33802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardebrecht A, Markert S, Sievert SM et al (2012) Physiological homogeneity among theendosymbionts of Riftiapachyptila and Tevniajerichonana revealed by proteogenomics. ISME J 6:766–776

    Article  CAS  PubMed  Google Scholar 

  • Gilbert JA, Steele JA, Caporaso JG et al (2012) Defining seasonal marine microbial community dynamics. The ISME journal 6(2):298–308

    Google Scholar 

  • Ghai R, Pašić L, Fernández AB et al (2011) New abundant microbial groups in aquatic hypersaline environments. Sci Rep 1:135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ghiglione JF, Murray AE (2012) Pronounced summer to winter differences and higher wintertime richness in coastal Antarctic marine bacterioplankton. Environ Microbiol 14(3):617–29

    Google Scholar 

  • Gohel SD, Singh SP (2015) Thermodynamics of a Ca2+-dependent highly thermostable alkaline protease from a haloalkliphilic actinomycete. Int J Biol Macromol 72:421–429

    Article  CAS  PubMed  Google Scholar 

  • Gottesman S (2002) Stealth regulation biological circuits with small RNA switches. Genes Dev 16(22):2829–2842

    Article  CAS  PubMed  Google Scholar 

  • Fuhrman JA, Hewson I, Schwalbach MS et al (2006) Annually reoccurring bacterial communities are predictable from ocean conditions. Proc Nat Aca Sci 103(35):13104–13109

    Google Scholar 

  • Hekstra DR, Leibler S (2012) Contingency and statistical laws in replicate microbial closed ecosystems. Cell 149(5):1164–1173

    Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68(4):669–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF et al (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5(10):R245–R249

    Article  CAS  PubMed  Google Scholar 

  • Henne A, Daniel R, Schmitz RA et al (1999) Construction of Environmental DNA Libraries in Escherichia coli and Screening for the Presence of Genes Conferring Utilization of 4-Hydroxybutyrate Appl. Environ Microbiol 65(9):3901–3907

    Google Scholar 

  • Herrmann RF, Shann JF (1997) Microbial community changes during the composting of municipal solid waste. Microb Ecol 33(1):78–85

    Article  CAS  PubMed  Google Scholar 

  • Hyland C, Pinney JW, McConkey GA et al (2006) metaSHARK: a WWW platform for interactive exploration of metabolic networks. Nucleic Acids Res 34(Suppl 2):W725–W728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia B, Xuan L, Cai K et al (2013) NeSSM: a next-generation sequencing simulator for metagenomics. PLoS One 8(10):e75448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson ZI, Zinser ER, Coe A et al (2006) Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311(5768):1737–1740

    Google Scholar 

  • Kashtan N, Roggensack SE, Rodrigue S et al (2014) Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344(6182):416–420

    Google Scholar 

  • Kirchman DL, Cottrell MT, Lovejoy C (2010) The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environ Microbiol 1:12(5):1132–1134

    Google Scholar 

  • Klamer M, Bååth E (1998) Microbial community dynamics during composting of straw material studied using phospholipid fatty acid analysis. FEMS Microbiol Ecol 27(1):9–20

    Article  CAS  Google Scholar 

  • Kleindienst S, Herbst FA, Stagars M et al (2014) Diverse sulfate-reducing bacteria of the Desulfosarcina/Desulfococcus clade are the key alkane degraders at marine seeps. ISME J 8(10):2029–2044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleiner M, Wentrup C, Lott C et al (2012) Metaproteomics of a gutless marine worm and its symbiotic microbial community reveal unusual pathways for carbon and energy use. Proc Natl Acad Sci U S A 109(19):E1173–E1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopf A, Kostadinov I, Wichels A et al (2015) Metatranscriptome of marine bacterioplankton during winter time in the North Sea assessed by total RNA sequencing. Mar Genomics 19:45–46

    Article  PubMed  Google Scholar 

  • Kovaleva OL, Tourova TP, Muyzer G et al (2011) Diversity of RuBisCO and ATP citrate lyase genes in soda lake sediments. FEMS Microbiol Ecol 75(1):37–47

    Article  CAS  PubMed  Google Scholar 

  • Krause L, Diaz NN, Goesmann A et al (2008) Phylogenetic classification of short environmental DNA fragments. Nucleic Acids Res 36(7):2230–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krsek M, Wellington EM (1999) Comparison of different methods for the isolation and purification of total community DNA from soil. J Microbiol Methods 39(1):1–16

    Google Scholar 

  • Krupke A, Lavik G, Halm H et al (2014) Distribution of a consortium between unicellular algae and the N2 fixing cyanobacterium UCYN-A in the North Atlantic Ocean. Environ Microbiol 16(10):3153–3167

    Article  CAS  PubMed  Google Scholar 

  • Kurtz ZD, Müller CL, Miraldi ER et al (2015) Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol 11(5):e1004226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Larsen PE, Field D, Gilbert JA (2012) Predicting bacterial community assemblages using an artificial neural network approach. Nat Methods 9(6):621–625

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Fan L, Zhong L et al (2012) Metaproteogenomic analysis of a community of sponge symbionts. ISME J 6(8):1515–1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luk AW, Williams TJ, Erdmann S et al (2014) Viruses of haloarchaea. Life 4(4):681–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marcy Y, Ouverney C, Bik EM et al (2007) Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci U S A 104(29):11889–11894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markert S, Arndt C, Felbeck H (2007) Physiological proteomics of the uncultured endosymbiont of Riftiapachyptila. Science 315(5809):247–250

    Article  CAS  PubMed  Google Scholar 

  • Martínez-García M, Santos F, Moreno-Paz M (2014) Unveiling viral–host interactions within the ‘microbial dark matter’. Nat Commun 5:4542

    Article  PubMed  CAS  Google Scholar 

  • Martin-Laurent F, Philippot L, Hallet S et al (2001) DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol 67(5):2354–2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGlynn SE, Chadwick GL, Kempes CP et al (2015) Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526(7574):531–535

    Article  CAS  PubMed  Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11(1):31–46

    Article  CAS  PubMed  Google Scholar 

  • Morris RM, Nunn BL, Frazar C et al (2010) Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction. ISME J 4(5):673–685

    Article  CAS  PubMed  Google Scholar 

  • Mußmann M, Hu FZ, Richter M et al (2007) Insights into the genome of large sulfur bacteria revealed by analysis of single filaments. PLoS Biol 5(9):e230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narasingarao P, Podell S, Ugalde JA et al (2012) De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J 6(1):81–93

    Article  CAS  PubMed  Google Scholar 

  • Nesatyy VJ, Suter MJ (2007) Proteomics for the analysis of environmental stress responses in organisms. Environ Sci Technol 41(20):6891–6900

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2011) Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13(8):1908–1923

    Google Scholar 

  • Øvreås L (2000) Population and community level approaches for analysing microbial diversity in natural environments. Ecol Lett 3(3):236–251

    Article  Google Scholar 

  • Poretsky RS, Bano N, Buchan A et al (2005) Analysis of microbial gene transcripts in environmental samples. Appl Environ Microbiol 71(7):4121–4126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preheim SP, Perrotta AR, Friedman J et al (2013) Computational methods for high-throughput comparative analyses of natural microbial communities. Methods Enzymol 531:353–370

    Article  CAS  PubMed  Google Scholar 

  • Purohit MK, Singh SP (2009) Assessment of various methods for extraction of metagenomic DNA from saline habitats of coastal Gujarat (India) to explore molecular diversity. Lett Appl Microbiol 49(3):338–344

    Article  CAS  PubMed  Google Scholar 

  • Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riddech N, Klammer S, Insam H (2002) Characterisation of microbial communities during composting of organic wastes. In: Insam H, Riddech N, Klammer S (eds) Microbiology of composting. Springer, Berlin, pp 43–51

    Chapter  Google Scholar 

  • Rondon MR, August PR, Bettermann AD et al (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms Appl. Environ Microbiol 66(6):2541–2547

    Google Scholar 

  • Rusch DB, Halpern AL, Sutton G et al (2007) The Sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol 5(3):e77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ryu T, Seridi L, Moitinho-Silva L (2016) Hologenome analysis of two marine sponges with different microbiomes. BMC Genomics 17(1):158

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanders JG, Beinart RA, Stewart FJ et al (2013) Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts. ISME J 7(8):1556–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santos F, Yarza P, Parro V, Meseguer I et al (2012) Culture-independent approaches for studying viruses from hypersaline environments. Appl Environ Microbiol 78(6):1635–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satinsky BM, Crump BC, Smith CB et al (2014) Microspatial gene expression patterns in the Amazon River Plume. Proc Natl Acad Sci U S A 111(30):11085–11090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt HF, Sakowski EG, Williamson SJ et al (2014) Shotgun metagenomics indicates novel family A DNA polymerases predominate within marine virioplankton. ISME J 8(1):103–114

    Article  CAS  PubMed  Google Scholar 

  • Segata N, Boernigen D, Tickle TL et al (2013) Computational meta‘omics for microbial community studies. Mol Syst Biol 9(1):666

    Article  PubMed  PubMed Central  Google Scholar 

  • Siddhapura PK, Vanparia S, Purohit MK et al (2010) Comparative studies on the extraction of metagenomic DNA from the saline habitats of Coastal Gujarat and Sambhar Lake, Rajasthan (India) in prospect of molecular diversity and search for novel biocatalysts. Int J Biol Macromol 47(3):375–379

    Article  CAS  PubMed  Google Scholar 

  • Simon C, Daniel R (2011) Metagenomic analyses: past and future trends. Appl Environ Microbiol 77(4):1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Singh BK, Campbell CD (2009) Soil genomics. Nat Rev Microbiol 7(10):756–756

    Article  CAS  PubMed  Google Scholar 

  • Sowell SM, Wilhelm LJ, Norbeck AD et al (2009) Transport functions dominate the SAR11 metaproteome at low-nutrient extremes in the Sargasso Sea. ISME J 3(1):93–105

    Article  CAS  PubMed  Google Scholar 

  • Stein JL, Marsh TL, Wu KY et al (1996) Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. J Bacteriol 178(3):591–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart F, Dmytrenko O, DeLong E et al (2011) Metatranscriptomic analysis of sulfur oxidation genes in the endosymbion to Solemya velum. Front Microbiol 2:134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streit WR, Schmitz RA (2004) Metagenomics—the key to the uncultured microbes. Curr Opin Microbiol 7(5):492–498

    Article  CAS  PubMed  Google Scholar 

  • Tettelin H, Masignani V, Cieslewicz MJ et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci U S A 102(39):13950–13955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas T, Rusch D, DeMaere MZ et al (2010) Functional genomic signatures of sponge bacteria reveal unique and shared features of symbiosis. ISME J 4(12):1557–1567

    Article  CAS  PubMed  Google Scholar 

  • Thompson AW, Foster RA, Krupke A, Carter BJ, Musat N et al (2012) Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 337(6101):1546–1550

    Article  CAS  PubMed  Google Scholar 

  • Thumar JT, Singh SP (2009) Organic solvent tolerance of an alkaline protease from salt-tolerant alkaliphilic Streptomyces clavuligerus strain Mit-1. J Ind Microbiol Biotechnol 36(2):211

    Article  CAS  PubMed  Google Scholar 

  • Tiquia SM, Michel FC Jr (2002) Bacterial diversity in livestock manure composts as characterized by terminal restriction fragment length polymorphisms (T-RFLP) of PCR-amplified 16S rRNA gene sequences. In: Insam H, Riddech N, Klammer S (eds) Microbiology of composting. Springer, Berlin, pp 65–82

    Chapter  Google Scholar 

  • Tourova TP, Slobodova NV, Bumazhkin BK et al (2013) Analysis of community composition of sulfur-oxidizing bacteria in hypersaline and soda lakes using soxB as a functional molecular marker. FEMS Microbiol Ecol 84(2):280–289

    Article  CAS  PubMed  Google Scholar 

  • Tringe SG, Von Mering C, Kobayashi A et al (2005) Comparative metagenomics of microbial communities. Science 308(5721):554–557

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457(7228):480–484

    Article  CAS  PubMed  Google Scholar 

  • Turova TP, Slobodova NV, Bumazhkin BK et al (2013) Diversity of diazotrophs in the sediments of hypersaline salt and soda lakes analyzed with the use of the nifH gene as a molecular marker. Mikrobiologiia 83(5):583–598

    Google Scholar 

  • Vandieken V, Pester M, Finke N et al (2012) Three manganese oxide-rich marine sediments harbor similar communities of acetate-oxidizing manganese-reducing bacteria. The ISME journal 6(11):2078–2090

    Google Scholar 

  • Venter JC, Remington K, Heidelberg JF et al (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304(5667):66–74

    Article  CAS  PubMed  Google Scholar 

  • Ventosa A, de la Haba RR, Sánchez-Porro C et al (2015) Microbial diversity of hypersaline environments: a metagenomic approach. Curr Opin Microbiol 25:80–87

    Article  CAS  PubMed  Google Scholar 

  • Vieites JM, Guazzaroni ME, Beloqui A et al (2009) Metagenomics approaches in systems microbiology. FEMS Microbiol Rev 33(1):236–255

    Article  CAS  PubMed  Google Scholar 

  • Wagner-Döbler I, Ballhausen B, Berger M et al (2010) The complete genome sequence of the algal symbiont Dinoroseobactershibae: a hitchhiker’s guide to life in the sea. ISME J 4(1):61–77

    Article  PubMed  CAS  Google Scholar 

  • Wang DZ, Xie ZX, Zhang SF (2014) Marine metaproteomics: current status and future directions. J Proteomics 97:27–35

    Article  CAS  PubMed  Google Scholar 

  • Ward DM, Weller R, Bateson MM (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345(6270):63

    Article  CAS  PubMed  Google Scholar 

  • Warnecke F, Hess M (2009) A perspective: metatranscriptomics as a tool for the discovery of novel biocatalysts. J Biotechnol 142(1):91–95

    Article  CAS  PubMed  Google Scholar 

  • Webster NS, Taylor MW, Behnam F et al (2010) Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ Microbiol 12(8):2070–2082

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wegley L, Edwards R, Rodriguez-Brito B et al (2007) Metagenomic analysis of the microbial community associated with the coral Poritesastreoides. Environ Microbiol 9(11):2707–2719

    Article  CAS  PubMed  Google Scholar 

  • Wilke A, Rückert C, Bartels D et al (2003) Bioinformatics support for high-throughput proteomics. J Biotechnol 106(2):147–156

    Article  CAS  PubMed  Google Scholar 

  • Wilbanks EG, Jaekel U, Salman V (2014) Microscale sulfur cycling in the phototrophic pink berry consortia of the Sippewissett Salt Marsh. Environ Microbiol 16(11):3398–415

    Google Scholar 

  • Williamson SJ, Rusch DB, Yooseph S et al (2008) The Sorcerer II Global Ocean Sampling Expedition: metagenomic characterization of viruses within aquatic microbial samples. PLoS One 3(1):e1456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilmes P, Bond PL (2004) The application of two-dimensional polyacrylamide gel electrophoresis and downstream analyses to a mixed community of prokaryotic microorganisms. Environ Microbiol 6(9):911–920

    Article  CAS  PubMed  Google Scholar 

  • Wilmes P, Bond PL (2006) Towards exposure of elusive metabolic mixed-culture processes: the application of metaproteomic analyses to activated sludge. Water Sci Technol 54(1):217–226

    Article  CAS  PubMed  Google Scholar 

  • Wippler J, Kleiner M, Lott C et al (2016) Transcriptomic and proteomic insights into innate immunity and adaptations to a symbiotic lifestyle in the gutless marine worm Olaviusalgarvensis. BMC Genomics 17(1):942

    Article  PubMed  PubMed Central  Google Scholar 

  • Woyke T, Teeling H, Ivanova NN et al (2006) Symbiosis insights through metagenomic analysis of a microbial consortium. Nature 443(7114):950–955

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Sun B (2009) Identification of novel esterase from metagenomic library of Yangtze river. J Microbiol Biotechnol 19(2):187–193

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Gao W, Johnson RH et al (2013) Integrated metagenomic and metatranscriptomic analyses of microbial communities in the meso-and bathypelagic realm of North Pacific Ocean. Mar Drugs 11(10):3777–3801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yooseph S, Sutton G, Rusch DB et al (2007) The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families. PLoS Biol 5(3):e16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zeyaullah M, Kamli MR, Islam B et al (2009) Metagenomics—an advanced approach for noncultivable micro-organisms. Biotechnol Mol Biol Rev 4(3):49–54

    CAS  Google Scholar 

  • Zhang W, Li F, Nie L (2010) Integrating multiple ‘omics’ analysis for microbial biology: application and methodologies. Microbiology 156(2):287–301

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, He Z, Yang Y et al (2015) High throughput metagenomic technologies for complex microbial community analysis: open and closed formats. MBio 6(1):e02288–e02214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Our work cited in this chapter from our research group has been supported under various programs of UGC, including the current CAS Programme, DST-FIST, and DST-Women Scientist Programme (Ms. Kruti Dangar). The DST-INSPIRE Fellowship and UGC-BSR Meritorious Fellowship to Ms. Nirali Raiyani and Ms. Rupal Pandya are duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya P. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Dangar, K.G., Raiyani, N.M., Pandya, R.D., Singh, S.P. (2017). Uncultivated Lineages and Host–Microbe Interaction in Saline Environment. In: Singh, R., Kothari, R., Koringa, P., Singh, S. (eds) Understanding Host-Microbiome Interactions - An Omics Approach. Springer, Singapore. https://doi.org/10.1007/978-981-10-5050-3_2

Download citation

Publish with us

Policies and ethics