Skip to main content

Visualization of Motion Inside Droplets

  • Chapter
  • First Online:
Selected Topics in Photonics

Part of the book series: IITK Directions ((IITKD,volume 2))

Abstract

Droplets are encountered in several natural systems, i.e. dew formation, cloud formation and practical applications such as inkjet printer, condenser, protein crystallization systems, digital microfluidic systems, disease diagnosis, droplet lenses, nano-patterning and droplet-based manufacturing systems. The internal hydrodynamics of droplets influence the behaviour and performance of these applications. Visualization of internal dynamics inside droplets is challenging due to the small-scale and curvature effect. The present study reports the ongoing work carried out at IITK on the interesting fluid flow dynamics inside droplets. Some of the case studies related to evaporating droplets, like a single evaporating droplet, two evaporating droplets, drying pattern and protein crystallization, have been reported. Marangoni stresses and buoyancy-driven Rayleigh convection are primarily responsible for motion inside droplets. The internal hydrodynamics inside a droplet shows several complexities irrespective of its simple symmetrical geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennacer R, Sefiane K (2014) Vortices, dissipation and flow transition in volatile binary drops. J Fluid Mech 749:649–665. doi:10.1017/jfm.2014.220

    Article  Google Scholar 

  2. Brutin D, Sobac B, Loquet B, Sampol J (2011) Pattern formation in drying drops of blood. J Fluid Mech 667:85–95. doi:10.1017/S0022112010005070

    Article  MATH  Google Scholar 

  3. Carles P, Cazabat AM (1989) Spreading involving the Marangoni effect: some preliminary results. Colloids Surf 41:97–105. doi:10.1016/0166-6622(89)80045-9

    Article  Google Scholar 

  4. Chao YP, Qi LH, Xiao Y, Luo J, Zhou JM (2012) Manufacturing of micro thin-walled metal parts by micro-droplet deposition. J Mater Process Technol 212:484–491. doi:10.1016/j.jmatprotec.2011.10.015

    Article  Google Scholar 

  5. Cira NJ, Benusiglio A, Prakash M (2015) Vapor-mediated sensing and motility in two-component droplets. Nature 519:446–450. doi:10.1038/nature14272

    Article  Google Scholar 

  6. Deegan RD, Bakajin O, Dupont TF, Huber G, Nagel SR, Witten TA (1997) Capillary flow as the cause of ring stains from dried liquid drops. Nature 389:827–829. doi:10.1038/39827

    Article  Google Scholar 

  7. Denkov ND, Velev OD, Kralchevsky PA, Ivanov IB, Yoshimura H, Nagayama K (1992) Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir 8:3183–3190. doi:10.1021/la00048a054

    Article  Google Scholar 

  8. Duocastella M, Florian C, Diaspro A (2015) Sub-wavelength laser nanopatterning using droplet lenses. Sci. Rep. 5:16199. doi:10.1038/srep16199

    Article  Google Scholar 

  9. Hegseth JJ, Rashidnia N, Chai A (1996) Natural convection in droplet evaporation. Phys Rev E 54:1640–1644. doi:10.1103/PhysRevE.54.1640

    Article  Google Scholar 

  10. Hu H, Larson RG (2005) Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21:3972–3980. doi:10.1021/la0475270

    Article  Google Scholar 

  11. Hu H, Larson RG (2006) Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 110:7090–7094. doi:10.1021/jp0609232

    Article  Google Scholar 

  12. Kaneda M, Takao Y, Fukai J (2010) Thermal and solutal effects on convection inside a polymer solution droplet on a substrate. Int. J. Heat Mass Transfer 53:4448–4457. doi:10.1016/j.ijheatmasstransfer.2010.06.049

    Article  MATH  Google Scholar 

  13. Kang KH, Lim HC, Lee HW, Lee SJ (2013) Evaporation-induced saline Rayleigh convection inside a colloidal droplet. Phys Fluids 25:042001. doi:10.1063/1.4797497

    Article  Google Scholar 

  14. Katsikis G, Cybulski JS, Prakash M (2015) Synchronous universal droplet logic and control. Nat Phys 11:588–596. doi:10.1038/nphys3341

    Article  Google Scholar 

  15. Kuiper S, Hendriks BHW (2004) Variable-focus liquid lens for miniature cameras. Appl Phys Lett 85:1128–1130. doi:10.1063/1.1779954

    Article  Google Scholar 

  16. Pradhan TK, Panigrahi PK (2015) Thermocapillary convection inside a stationary sessile water droplet on a horizontal surface with an imposed temperature gradient. Exp Fluids 56:178. doi:10.1007/s00348-015-2051-2

    Article  Google Scholar 

  17. Ristenpart WD, Kim PG, Domingues C, Wan J, Stone HA (2007) Influence of substrate conductivity on circulation reversal in evaporating drops. Phys Rev Lett 99:234502. doi:10.1103/PhysRevLett.99.234502

    Article  Google Scholar 

  18. Savino R, Fico S (2004) Transient Marangoni convection in hanging evaporating drops. Phys Fluids 16:3738–3754. doi:10.1063/1.1772380

    Article  MATH  Google Scholar 

  19. Savino R, Monti R (1996) Buoyancy and surface-tension-driven convection in hanging-drop protein crystallizer. J Cryst Growth 165:308–318. doi:10.1016/0022-0248(96)00151-0

    Article  Google Scholar 

  20. Tam D, Arnim VV, Mckinley GH, Hosoi AE (2009) Marangoni convection in droplets on superhydrophobic surfaces. J Fluid Mech 624:101–123. doi:10.1017/S0022112008005053

    Article  MATH  Google Scholar 

  21. Tekin E, Smith PJ, Schubert US (2008) Inkjet printing as a deposition and patterning tool for polymers and inorganic particles. Soft Matter 4:703–713. doi:10.1039/B711984D

    Article  Google Scholar 

  22. Thokchom AK, Gupta A, Jaijus PJ, Singh A (2014) Analysis of fluid flow and particle transport in evaporating droplets exposed to infrared heating. Int J Heat Mass Transf 68:67–77. doi:10.1016/j.ijheatmasstransfer.2013.09.012

    Article  Google Scholar 

  23. Thokchom AK, Swaminathan R, Singh A (2014) Fluid flow and particle dynamics inside an evaporating droplet containg live bacterial displaying chemotaxis. Langmuir 30:12144–12153. doi:10.1021/la502491e

    Article  Google Scholar 

  24. Wen JT, Ho CM, Lillehoj PB (2013) Coffee ring aptasensor for rapid protein detection. Langmuir 29:8440–8446. doi:10.1021/la400224a

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the Department of Science and Technology, Government of India for financial support to carry out the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradipta Kumar Panigrahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pradhan, T.K., Panigrahi, P.K. (2018). Visualization of Motion Inside Droplets. In: Pradhan, A., Krishnamurthy, P. (eds) Selected Topics in Photonics. IITK Directions, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-10-5010-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5010-7_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5009-1

  • Online ISBN: 978-981-10-5010-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics