Skip to main content

Fluorescence Optical Tomography for Cancer Detection

  • Chapter
  • First Online:
Book cover Selected Topics in Photonics

Part of the book series: IITK Directions ((IITKD,volume 2))

  • 786 Accesses

Abstract

The ability of fluorescence imaging to identify early physiological changes in tissue places it suitably for use in pre-cancer diagnosis. We have presented a review of the broad classification of tomographic schemes with respect to this problem. We have articulated some of the main motivations, issues, and potential solutions for the use of fluorescence optical tomographic systems for limited data in vivo imaging. We have also reported recent results obtained by us in our ongoing work of developing a frequency domain FOT system for early cervical cancer diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cancer Fact Sheet published by International Agency for Research on Cancer retrieved on 18th Dec 2016 from http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx

  2. Cancer Statistics published by National Institute of Cancer Prevention and Research retrieved on 18th Dec 2016 from http://cancerindia.org.in/cp/index.php/know-about-cancer/statistics#cancer-statistics

  3. Thekkek N, Richards-Kortum R (2008) Optical imaging for cervical cancer detection: solutions for a continuing global problem. Nat Rev Cancer 8(9):725–731

    Article  Google Scholar 

  4. Nair MS, Ghosh N, Raju NS, Pradhan A (2002) Determination of optical parameters of human breast tissue from spatially resolved fluorescence: a diffusion theory model. Appl Opt 41(19):4024–4035

    Article  Google Scholar 

  5. Gupta S, Raja VS, Pradhan A (2006) Simultaneous extraction of optical transport parameters and intrinsic fluorescence of tissue mimicking model media using a spatially resolved fluorescence technique. Appl Opt 45(28):7529–7537

    Article  Google Scholar 

  6. Durduran T, Choe R, Baker WB, Yodh AG (2010) Diffuse optics for tissue monitoring and tomography. Rep Prog Phys 73(7):076701

    Article  Google Scholar 

  7. van de Ven S, Elias S, Wiethoff A, van der Voort M, Leproux A, Nielsen T, Brendel B, Bakker L, van der Mark M, Mali W, Luijten P (2009) Diffuse optical tomography of the breast: initial validation in benign cysts. Mol Imag Biol 11(2):64–70

    Article  Google Scholar 

  8. Joshi A, Bangerth W, Hwang K, Rasmussen JC, Sevick-Muraca EM (2006) Fully adaptive FEM based fluorescence optical tomography from time-dependent measurements with area illumination and detection. Med Phys 33(5):1299–1310

    Article  Google Scholar 

  9. Corlu A, Choe R, Durduran T, Rosen MA, Schweiger M, Arridge SR, Schnall MD, Yodh AG (2007) Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans. Opt Express 15(11):6696–6716

    Article  Google Scholar 

  10. Darne C, Lu Y, Sevick-Muraca EM (2013) Small animal fluorescence and bioluminescence tomography: a review of approaches, algorithms and technology update. Phys Med Biol 59(1):R1

    Article  Google Scholar 

  11. Lin Y, Ghijsen M, Nalcioglu O, Gulsen G (2012) In vivo validation of quantitative frequency domain fluorescence tomography. J Biomed Opt 17(12):126021

    Article  Google Scholar 

  12. Fortin PY, Genevois C, Koenig A, Heinrich E, Texier I, Couillaud F (2012) Detection of brain tumors using fluorescence diffuse optical tomography and nanoparticles as contrast agents. J Biomed Opt 17(12):126004

    Article  Google Scholar 

  13. Liu Q, Ramanujam N (2006) Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra. Appl Opt 45(19):4776–4790

    Article  Google Scholar 

  14. Feng H, Bai J, Song X, Hu G, Yao J (2007) A near-infrared optical tomography system based on photomultiplier tube. Int J Biomed Imaging

    Google Scholar 

  15. Schmitz CH, Lcker M, Lasker JM, Hielscher AH, Barbour RL (2002) Instrumentation for fast functional optical tomography. Rev Sci Instrum 73(2):429–439

    Google Scholar 

  16. Schulz RB, Ripoll J, Ntziachristos V (2004) Experimental fluorescence tomography of tissues with noncontact measurements. IEEE Trans Med Imaging 23(4):492–500

    Article  Google Scholar 

  17. Lu Y, Zhang W, Wu L, Zhang L, Gao F (2013) March. A time-domain diffuse optical/fluorescent tomography using multi-dimensional TCSPC design. In: SPIE BiOS, pp 85721I-85721I. International Society for Optics and Photonics

    Google Scholar 

  18. Zint CV, Uhring W, Torregrossa M, Cunin B, Poulet P (2003) Streak camera: a multidetector for diffuse optical tomography. Appl Opt 42(16):3313–3320

    Article  Google Scholar 

  19. Kumar AT, Raymond SB, Dunn AK, Bacskai BJ, Boas DA (2008) A time domain fluorescence tomography system for small animal imaging. IEEE Trans Med Imaging 27(8):1152–1163

    Article  Google Scholar 

  20. Madsen S, Anderson ER, Haskell RC, Tromberg BJ (1995) May. High-bandwidth frequency-domain photon migration instrument for clinical use. In: Photonics West’95, pp 257–263. International Society for Optics and Photonics (1995)

    Google Scholar 

  21. Gratton E, Limkeman M (1983) A continuously variable frequency cross-correlation phase fluorometer with picosecond resolution. Biophys J 44(3):315

    Article  Google Scholar 

  22. Culver JP, Choe R, Holboke MJ, Zubkov L, Durduran T, Slemp A, Ntziachristos V, Chance B, Yodh AG (2003) Three-dimensional diffuse optical tomography in the parallel plane transmission geometry: evaluation of a hybrid frequency domain/continuous wave clinical system for breast imaging. Med Phys 30(2):235–247

    Article  Google Scholar 

  23. Godavarty A, Eppstein MJ, Zhang C, Theru S, Thompson AB, Gurfinkel M, Sevick-Muraca EM (2003) Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera. Phys Med Biol 48(12):1701(2003)

    Google Scholar 

  24. Arridge SR (1999) Optical tomography in medical imaging. Inverse Prob 15(2):R41–R93

    Google Scholar 

  25. Wang LV, Wu HI (2012) Biomedical optics: principles and imaging. Wiley (2012)

    Google Scholar 

  26. Klose AD, Larsen EW (2006) Light transport in biological tissue based on the simplified spherical harmonics equations. J Comput Phys 220(1):441–470

    Article  MATH  MathSciNet  Google Scholar 

  27. Martelli F, Del Bianco S, Ismaelli A, Zaccanti G (2010) Light propagation through biological tissue and other diffusive media: theory. solutions, and software. SPIE Press, Bellingham, 2009

    Google Scholar 

  28. Liemert A, Kienle A (2011) Analytical solution of the radiative transfer equation for infinite-space fluence. Phys Rev A 83(1):015804

    Article  Google Scholar 

  29. Bjrn S, Ntziachristos V, Schulz R (2010) Mesoscopic epifluorescence tomography: reconstruction of superficial and deep fluorescence in highly-scattering media. Opt Express 18(8):8422–8429

    Google Scholar 

  30. Alerstam E, Svensson T, Andersson-Engels S (2008) Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration. J Biomed Opt 13(6):060504

    Article  Google Scholar 

  31. Ren K, Bal G, Hielscher AH (2006) Frequency domain optical tomography based on the equation of radiative transfer. SIAM J Sci Comput 28(4):1463–1489

    Article  MATH  MathSciNet  Google Scholar 

  32. Fedele F, Laible JP, Eppstein MJ (2003) Coupled complex adjoint sensitivities for frequency-domain fluorescence tomography: theory and vectorized implementation. J Comput Phys 187(2):597–619

    Article  MATH  Google Scholar 

  33. Schweiger M, Arridge SR, Nissila I, Gauss Newton method for image reconstruction in diffuse optical tomography. Phys Med Biol 50(10):2365

    Google Scholar 

  34. Kim AD (2011) Correcting the diffusion approximation at the boundary. JOSA A 28(6):1007–1015

    Article  Google Scholar 

  35. Tarvainen T, Vauhkonen M, Kolehmainen V, Kaipio JP (2005) Hybrid radiative transfer diffusion model for optical tomography. Appl Opt 44(6):876–886

    Article  Google Scholar 

  36. Chu M (2010) Modelling light transport through biological tissue using the simplified spherical harmonics approximation

    Google Scholar 

  37. Guo H, Hou Y, He X, Yu J, Cheng J, Pu X (2014) Adaptive hp finite element method for fluorescence molecular tomography with simplified spherical harmonics approximation. J Innov Opt Health Sci 7(02):1350057

    Article  Google Scholar 

  38. Joshi A, Rasmussen JC, Sevick-Muraca EM, Wareing TA, McGhee J (2008) Radiative transport-based frequency-domain fluorescence tomography. Phys Med Biol 53(8):2069

    Article  Google Scholar 

  39. Soloviev VY, Arridge SR (2011) Optical Tomography in weakly scattering media in the presence of highly scattering inclusions. Biomed Opt Express 2(3):440–451

    Article  Google Scholar 

  40. Klose AD, Pschinger T (2011) Excitation-resolved fluorescence tomography with simplified spherical harmonics equations. Phys Med Biol 56(5):1443

    Google Scholar 

  41. Kim HK, Hielscher AH (2008) A PDE-constrained SQP algorithm for optical tomography based on the frequency-domain equation of radiative transfer. Inverse Prob 25(1):015010

    Article  MATH  MathSciNet  Google Scholar 

  42. Diamond SG, Huppert TJ, Kolehmainen V, Franceschini MA, Kaipio JP, Arridge SR, Boas DA (2006) Dynamic physiological modeling for functional diffuse optical tomography. Neuroimage 30(1):88–101

    Article  Google Scholar 

  43. Zhang X, Liu F, Zuo S, Shi J, Zhang G, Bai J, Luo J (2015) Reconstruction of fluorophore concentration variation in dynamic fluorescence molecular tomography. IEEE Trans Biomed Eng 62(1):138–144

    Article  Google Scholar 

  44. Alacam B, Yazici B (2009) Direct reconstruction of pharmacokinetic-rate images of optical fluorophores from NIR measurements. IEEE Trans Med Imaging 28(9):1337–1353

    Article  Google Scholar 

  45. Naik N, Patil N, Yadav Y, Eriksson J, Pradhan A (Accepted)  Fully non-linear SP3 approximation based fluorescence optical tomography. IEEE Trans Med Imaging. DOI:10.1109/TMI.2017.2718028

  46. Vogel CR (2002) Computational methods for inverse problems. SIAM

    Google Scholar 

  47. Madsen K, Nielsen HB, Tingleff O (2004) Methods for non-linear least squares problems retreived on 17th Jan 2015 from http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf

  48. Naik N, Eriksson J, de Groen P, Sahli H (2008) A nonlinear iterative reconstruction and analysis approach to shape-based approximate electromagnetic tomography. IEEE Trans Geosci Remote Sens 46(5):1558–1574

    Article  Google Scholar 

  49. Patil N, Naik N, Yadav Y, Pradhan A (2014) An SP3-approximation based fully non-linear reconstruction scheme for fluorescence optical tomography. In: 12th International conference on fibre optics and photonics, Kharagpur, India. OSA Technical Digest (online), p T2B.4

    Google Scholar 

  50. Kienle A, Patterson MS (1997) Determination of the optical properties of semi-infinite turbid media from frequency-domain reflectance close to the source. Phys Med Biol 42(9):1801

    Article  Google Scholar 

  51. Erickson SJ, Martinez SL, DeCerce J, Romero A, Caldera L, Godavarty A (2013) Three-dimensional fluorescence tomography of human breast tissues in vivo using a hand-held optical imager. Phys Med Biol 58(5):1563

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support for part of this work by the BRNS (DAE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asima Pradhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patil, N., Singh, P., Naik, N., Pradhan, A. (2018). Fluorescence Optical Tomography for Cancer Detection. In: Pradhan, A., Krishnamurthy, P. (eds) Selected Topics in Photonics. IITK Directions, vol 2. Springer, Singapore. https://doi.org/10.1007/978-981-10-5010-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5010-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5009-1

  • Online ISBN: 978-981-10-5010-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics