Skip to main content

Neutral Li@C60: A Hydrogen-Like Superatom

  • Chapter
  • First Online:
  • 359 Accesses

Abstract

Lithium-ion-containing [60]fullerene, Li+@C60, was electrochemically reduced by constant current electrolysis without the use of any other supporting electrolyte to produce lithium-containing [60]fullerene, Li@C60 in a neutral form. Prior to the electrolysis, the ionic conductivity of Li+@C60 was evaluated, and hexafluorophosphate and bis(trifluoromethanesulfonyl)imide salts of Li+@C60 in solution showed ionic conductivity similar to that of tetrabutylammonium hexafluorophosphate, a commonly used supporting electrolyte. Li@C60 was obtained from the electrolysis as a black power and characterized by UV–Vis-NIR, NMR, and electron spin resonance spectroscopy and single-crystal X-ray structural analysis. A monomeric form, formally represented as Li+@\({{\text{C}}_{60}}^{ \cdot - }\), was likely the predominant species in solution according to the spectroscopic data, but a dimeric structure with coupling of the radicals was found in the crystal structure. An equilibrium might exist between the monomeric and dimeric forms in solution, but the formation of the dimeric structure in the solid state was found to be favored for Li+@\({{\text{C}}_{60}}^{ \cdot - }\) compared with empty \({\text{C}_{60}}^{ \cdot - }\) because the positive and negative charges are canceled in Li+@\({{\text{C}}_{60}}^{ \cdot - }\), thus weakening the electrostatic repulsion between two molecules. Intriguingly, Li+@\({{\text{C}}_{60}}^{ \cdot - }\) can be regarded as a superatom analogous to the hydrogen atom, where Li+ is the nucleus and the monovalent \({\text{C}_{60}}^{ \cdot - }\) cage is the electron orbital. In addition, the dimeric form of Li+@\({{\text{C}}_{60}}^{ \cdot - }\) can be considered analogous to a hydrogen molecule.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Shinohara H (2000) Endohedral metallofullerenes. Rep Prog Phys 63:843–892. doi:10.1088/0034-4885/63/6/201

    Article  CAS  Google Scholar 

  2. Popov AA, Yang S, Dunsch L (2013) Endohedral fullerenes. Chem Rev 113:5989–6113. doi:10.1021/cr300297r

    Article  CAS  Google Scholar 

  3. Johnson RD, de Vries MS, Salem J, Bethune DS, Yannoni CS (1992) Electron paramagnetic resonance studies of lanthanum-containing C82. Nature 355:239–240. doi:10.1038/355239a0

    Article  CAS  Google Scholar 

  4. Nagase S, Kobayashi K (1994) The ionization energies and electron affinities of endohedral metallofullerenes MC82 (M = Sc, Y, La): density functional calculations. J Chem Soc, Chem Commun. doi:10.1039/c39940001837

    Google Scholar 

  5. Ueno H, Kokubo K, Nakamura Y, Ohkubo K, Ikuma N, Moriyama H, Fukuzumi S, Oshima T (2013) Ionic conductivity of [Li+@C60](PF6 ) in organic solvents and its electrochemical reduction to Li+@C ∙−60 . Chem Commun 49:7376–7378. doi:10.1039/c3cc43901a

    Article  CAS  Google Scholar 

  6. Aoyagi S, Sado Y, Nishibori E, Sawa H, Okada H, Tobita H, Kasama Y, Kitaura R, Shinohara H (2012) Rock-salt-type crystal of thermally contracted C60 with encapsulated lithium cation. Angew Chem Int Ed 51:3377–3381. doi:10.1002/anie.201108551

    Article  CAS  Google Scholar 

  7. Tanigak K, Hirosawa I, Ebbesen TW, Mizuki J, Shimakawa Kubo Y, Tsai JS, Kuroshima S (1992) Superconductivity in sodium-and lithium-containing alkali-metal fullerides. Nature 356:419–421. doi:10.1038/356419a0

    Article  Google Scholar 

  8. Ganin AY, Takabayashi Y, Jeglič P, Arčon D, Potočnik A, Baker PJ, Ohishi Y, McDonald MT, Tzirakis MD, McLennan A, Darling GR, Takata M, Rosseinsky MJ, Prassides K (2010) Polymorphism control of superconductivity and magnetism in Cs3C60 close to the Mott transition. Nature 466:221–225. doi:10.1038/nature09120

    Article  CAS  Google Scholar 

  9. Moriyama H, Kobayashi H, Kobayashi A, Watanabe T (1993) Electrocrystallization and ESR spectra of the single crystal [N(P(C6H5)3)2]·C60. J Am Chem Soc 115:1185–1187. doi:10.1021/ja00056a075

  10. Moriyama H, Abe M, Motoki H, Watanabe T, Hayashi S, Kobayashi H (1998) Synthesis and physical properties of new metallic compound Li x C60(THF) y . Synth Met 94:167–171. doi:10.1016/s0379-6779(97)04165-9

    Article  CAS  Google Scholar 

  11. Stephens PW, Cox D, Lauher JW, Mihaly L, Wiley JB, Allemand P-M, Hirsch A, Holczer K, Li Q, Thompson JD, Wudl F (1992) Lattice structure of the fullerene ferromagnet TDAE–C60. Nature 355:331–332. doi:10.1038/355331a0

    Article  CAS  Google Scholar 

  12. Ueno H, Aoyagi S, Yamazaki Y, Ohkubo K, Ikuma N, Okada H, Kato T, Matsuo Y, Fukuzumi S, Kokubo K (2016) Electrochemical reduction of cationic Li+@C60 to neutral Li+@C ∙–60 : isolation and characterisation of endohedral [60]fulleride. Chem Sci 7:5770–5774. doi:10.1039/c6sc01209d

    Article  CAS  Google Scholar 

  13. Fukuzumi S, Ohkubo K, Kawashima Y, Kim DS, Park JS, Jana A, Lynch VM, Kim D, Sessler JL (2011) Ion-controlled on-off switch of electron transfer from tetrathiafulvalene calix[4]pyrroles to Li+@C60. J Am Chem Soc 133:15938–15941. doi:10.1021/ja207588c

    Article  CAS  Google Scholar 

  14. Ohkubo K, Kawashima Y, Fukuzumi S (2012) Strong supramolecular binding of Li+@C60 with sulfonated meso-tetraphenylporphyrins and long-lived photoinduced charge separation. Chem Commun 48:4314–4316. doi:10.1039/c2cc31186k

    Article  CAS  Google Scholar 

  15. Kato T, Kodama T, Shida T, Nakagawa T, Matsui Y, Suzuki S, Shiromaru H, Yamauchi K, Achiba Y (1991) Electronic absorption spectra of the radical anions and cations of fullerenes: C60 and C70. Chem Phys Lett 180:446–450. doi:10.1016/0009-2614(91)85147-o

    Article  CAS  Google Scholar 

  16. Kato T, Kodama T, Oyama M, Okazaki S, Shida T, Nakagawa T, Matsui Y, Suzuki S, Shiromaru H, Yamauchi K, Achiba Y (1991) ESR and optical studies of the radical anion of C60. Chem Phys Lett 186:35–39. doi:10.1016/0009-2614(91)80188-4

    Article  CAS  Google Scholar 

  17. Kato T, Kodama T, Shida T (1993) Spectroscopic studies of the radical anion of C60. Detection of the fluorenscence and reinvestigation of the ESR spectrum. Chem Phys Lett 205:405–409. doi:10.1016/0009-2614(93)87142-p

    Article  CAS  Google Scholar 

  18. Stevenson S, Rice G, Glass T, Harich K, Cromer F, Jordan MR, Craft J, Hadju E, Bible R, Olmstead MM, Maitra K, Fisher AJ, Balch AL, Dorn HC (1999) Small-bandgap endohedral metallofullerenes in high yield and purity. Nature 401:55–57. doi:10.1038/43415

    Article  CAS  Google Scholar 

  19. Lee HM, Olmstead MM, Suetsuna T, Shimotani H, Dragoe N, Cross RJ, Kitazawa K, Balch AL (2002) Crystallographic characterization of Kr@C60 in (0.09Kr@C60/0.91C60)·{NiII(OEP)}·2C6H6. Chem Commun. doi:10.1039/b202925c

  20. Oszlányi G, Bortel G, Faigel G, Gránásy L, Bendele GM, Stephens PW, Forró L (1996) Single C–C bond in (C60) 2−2 . Phys Rev B 54:11849–11852. doi:10.1103/PhysRevB.54.11849

    Article  Google Scholar 

  21. Matsuo Y, Nakamura E (2005) Syntheses, structure, and derivatization of potassium complexes of penta(organo)[60]fullerene-monoanion, -dianion, and -trianion into hepta- and octa(organo)fullerenes. J Am Chem Soc 127:8457–8466. doi:10.1021/ja050318x

    Article  CAS  Google Scholar 

  22. Maeda Y, Sato S, Inada K, Nikawa H, Yamada M, Mizorogi N, Hasegawa T, Tsuchiya T, Akasaka T, Kato T, Slanina Z, Nagase S (2010) Regioselective exohedral functionalization of La@C82 and its 1,2,3,4,5-pentamethylcyclopentadiene and adamantylidene adducts. Chem Eur J 16:2193–2197. doi:10.1002/chem.200902512

    Article  CAS  Google Scholar 

  23. Konarev DV, Khasanov SS, Otsuka A, Saito G (2002) The reversible formation of a single-bonded (C60 )2 dimer in ionic charge transfer complex: Cp*2Cr·C60(C6H4Cl2)2. The molecular structure of (C60 )2. J Am Chem Soc 124:8520–8521. doi:10.1021/ja0202614

  24. Marcus Y, Hefter G (2006) Ion pairing. Chem Rev 106:4585–4621. doi:10.1021/cr040087x

    Article  CAS  Google Scholar 

  25. Feng M, Zhao J, Petek H (2008) Atomlike, hollow-core-bound molecular orbitals of C60. Science 320:359–362. doi:10.1126/science.1155866

    Article  CAS  Google Scholar 

  26. Zhao J, Feng M, Yang J, Petek H (2009) The superatom states of fullerenes and their hybridization into the nearly free electron bands of fullerites. ACS Nano 3:853–864. doi:10.1021/nn800834k

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Matsuo .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd

About this chapter

Cite this chapter

Matsuo, Y., Okada, H., Ueno, H. (2017). Neutral Li@C60: A Hydrogen-Like Superatom. In: Endohedral Lithium-containing Fullerenes. Springer, Singapore. https://doi.org/10.1007/978-981-10-5004-6_7

Download citation

Publish with us

Policies and ethics