Skip to main content

Chemical Modification of Li+@C60

  • Chapter
  • First Online:
  • 339 Accesses

Abstract

The synthesis of lithium-ion-containing [6,6]-phenyl-C61-butyric acid methyl ester (Li+@PCBM) was first demonstrated through the organic functionalization of Li+@C60. The [5,6]- and [6,6]-isomers of [Li+@PCBM]PF6 were successfully prepared, and the structure of [6,6]-[Li+@PCBM]PF6 was elucidated by X-ray crystallography. The Diels–Alder reaction of Li+@C60 was first investigated using cyclopentadiene as a diene. This reaction was fast, with an equilibrium constant of more than 1000-fold that for the reaction with the C60. The Diels–Alder reaction of [Li+@C60]PF6 with 1,3-cyclohexadiene was also experimentally and computationally investigated to precisely determine the kinetic parameters. Li+@C60 reacted 2400-fold faster, compared with the empty C60. Li+-containing fullerenol was synthesized through cyclosulfation followed by hydrolysis. The reaction proceeded with good regioselectively, and the product was highly soluble, even in polar solvents. Iridium and platinum complexes of Li+@C60 were synthesized, and an electrostatic attractive interaction between inner Li+ and outer transition metals was demonstrated. A supramolecular complex of [10]cycloparaphenylene and Li+@C60 was also synthesized. Charge delocalization of the inner cationic charge on outer [10]cycloparaphenylene through C60 π-conjugated system was suggested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Taylor R (1999) Lecture notes on fullerene chemistry. A handbook for chemists. Imperial College Press, London

    Book  Google Scholar 

  2. Hirsch A, Brettreich M (2005) Fullerenes: chemistry and reactions. Wiley-VCH, Weinheim, Germany. doi:10.1002/3527603492

    Google Scholar 

  3. Thilgen C, Diederich F (2006) Structural aspects of fullerene chemistry-a journey through fullerene chirality. Chem Rev 106:5049–5135. doi:10.1021/cr0505371

    Article  CAS  Google Scholar 

  4. Matsuo Y, Nakamura E (2008) Selective multiaddition of organocopper reagents to fullerenes. Chem Rev 108:3016–3028. doi:10.1021/cr0684218

    Article  CAS  Google Scholar 

  5. Matsuo Y, Okada H, Maruyama M, Sato H, Tobita H, Ono Y, Omote K, Kawachi K, Kasama Y (2012) Covalently chemical modification of lithium ion-encapsulated fullerene: synthesis and characterization of [Li+@PCBM]PF6 . Org Lett 14:3784–3787. doi:10.1021/ol301671n

    Article  CAS  Google Scholar 

  6. Hummelen JC, Knight BW, LePeq F, Wudl F, Yao J, Wilkins CL (1995) Preparation and characterization of fulleroid and methanofullerene derivatives. J Org Chem 60:532–538. doi:10.1021/jo00108a012

    Article  CAS  Google Scholar 

  7. Gonzalez R, Hummelen JC, Wudl F (1995) The specific acid-catalyzed and photochemical isomerization of a robust fulleroid to a methanofullerene. J Org Chem 60:2618–2620. doi:10.1021/jo00113a049

    Article  CAS  Google Scholar 

  8. Kawashima Y, Ohkubo K, Okada H, Matsuo Y, Fukuzumi S (2014) Supramolecular formation of Li+@PCBM fullerene with sulfonated porphyrins and long-lived charge separation. ChemPhysChem 15:3782–3790. doi:10.1002/cphc.201402512

    Article  CAS  Google Scholar 

  9. Ohkubo K, Kawashima Y, Fukuzumi S (2012) Strong supramolecular binding of Li+@C60 with sulfonated meso-tetraphenylporphyrins and long-lived photoinduced charge separation. Chem Commun 48:4314–4316. doi:10.1039/c2cc31186k

    Article  CAS  Google Scholar 

  10. Diels O, Alder K (1928) Synthesen in der hydroaromatischen Reihe. Justus Liebig’s Annalen der Chemie 460:98–122. doi:10.1002/jlac.19284600106

    Article  CAS  Google Scholar 

  11. Ohno M, Azuma T, Kojima S, Shirakawa Y, Eguchi S (1996) An efficient functionalization of [60]fullerene. Diels-Alder reaction using 1,3-butadienes substituted with electron-withdrawing and electron-donating (silyloxy) groups. Tetrahedron 52:4983–4994. doi:10.1016/0040-4020(96)00106-8

    Article  CAS  Google Scholar 

  12. Kawakami H, Okada H, Matsuo Y (2013) Efficient Diels–Alder addition of cyclopentadiene to lithium ion encapsulated [60]fullerene. Org Lett 15:4466–4469. doi:10.1021/ol4020046

    Article  CAS  Google Scholar 

  13. Ueno H, Kawakami H, Nakagawa K, Okada H, Ikuma N, Aoyagi S, Kokubo K, Matsuo Y, Oshima T (2014) Kinetic study of the Diels–Alder reaction of Li+@C60 with cyclohexadiene: greatly increased reaction rate by encapsulated Li+. J Am Chem Soc 136:11162–11167. doi:10.1021/ja505952y

    Article  CAS  Google Scholar 

  14. Suzuki T, Li Q, Khemani KC, Wudl F, Almarsson O (1991) Systematic inflation of buckminsterfillerene C60: synthesis of diphenyl fulleroids C61 to C66. Science 254:1186–1188. doi:10.1126/science.254.5035.1186

    Article  CAS  Google Scholar 

  15. Suzuki T, Li Q, Khemani KC, Wudl F (1992) Dihydrofulleroid H2C61: synthesis and properties of the parent fulleroid. J Am Chem Soc 114:7301–7302. doi:10.1021/ja00044a055

    Article  CAS  Google Scholar 

  16. Smith AB, Strongin RM, Brard L, Furst GT, Romanow WJ, Owens KG, King RC (1993) 1,2-Methanobuckminsterfullerene (C61H2), the parent fullerene cyclopropane: synthesis and structure. J Am Chem Soc 115:5829–5830. doi:10.1021/ja00066a063

    Article  CAS  Google Scholar 

  17. Smith AB, Strongin RM, Brard L, Furst GT, Romanow WJ, Owens KG, Goldschmidt RJ, King RC (1995) Synthesis of prototypical fullerene cyclopropanes and annulenes. Isomer differentiation via NMR and UV spectroscopy. J Am Chem Soc 117:5492–5502. doi:10.1021/ja00125a009

    Article  CAS  Google Scholar 

  18. Diederich FO, Isaacs L, Philp D (1994) Valence isomerism and rearrangements in methanofullerenes. J Chem Soc Perkin Trans 2:391–394. doi:10.1039/p29940000391

    Article  Google Scholar 

  19. Osterodt J, Nieger M, Vögtle F (1994) First X-ray determination of cyclopropane structure in methanofullerenes. J Chem Soc Chem Commun 1994:1607–1608. doi:10.1039/c39940001607

    Article  Google Scholar 

  20. Okada K, Kawakami H, Aoyagi S, Matsuo Y (2017) Crystallographic structure determination of both [5,6]- and [6,6]-isomers of lithium-ion-containing dipheylmethano[60]fullerene. J Org Chem 82:5868–5872. doi: 10.1021/acs.joc.7b00730

  21. Iversen BB, Darovsky A, Bolotovsky R, Coppens P (1998) Low-temperature synchrotron radiation study of a twinned disordered crystal of bis(4,4′-bromophenyl)-61,61-diyl methano fullerene C60. Acta Cryst B 54:174–179. doi:10.1107/s0108768197012007

    Article  Google Scholar 

  22. Murata Y, Murata M, Komatsu K (2003) 100% encapsulation of a hydrogen molecule into an open-cage fullerene derivative and gas-phase generation of H2@C60. J Am Chem Soc 125:7152–7153. doi:10.1021/ja0354162

    Article  CAS  Google Scholar 

  23. Aoyagi S, Tokumitu A, Sugimoto K, Okada H, Hoshino N, Akutagawa T (2016) Tunneling motion and antiferroelectric ordering of lithium cations trapped inside carbon cages. J Phys Soc Jpn 85:094605. doi:10.7566/jpsj.85.094605

    Article  Google Scholar 

  24. Suzuki H, Ishida M, Yamashita M, Otani C, Kawachi K, Kasama Y, Kwon E (2016) Rotational dynamics of Li+ ions encapsulated in C60 cages at low temperatures. Phys Chem Chem Phys 18:31384–31387. doi:10.1039/c6cp06949e

    Article  CAS  Google Scholar 

  25. Ueno H, Kokubo K, Kwon E, Nakamura Y, Ikuma N, Oshima T (2013) Synthesis of a new class of fullerene derivative Li+@C60O(OH)7 as a “cation-encapsulated anion nanoparticle”. Nanoscale 5:2317–2321. doi:10.1039/C3NR33608E

    Article  CAS  Google Scholar 

  26. Chiang LY, Wang L-Y, Swirczewski JW, Soled S, Cameron S (1994) Efficient synthesis of polyhydroxylated fullerene derivatives via hydrolysis of polycyclosulfated precursors. J Org Chem 59:3960–3968. doi:10.1021/jo00093a030

    Article  CAS  Google Scholar 

  27. Kokubo K, Matsubayashi K, Tategaki H, Takada H, Oshima T (2008) Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups. ACS Nano 2:327–333. doi:10.1021/nn700151z

    Article  CAS  Google Scholar 

  28. Kokubo K, Shirakawa S, Kobayashi N, Aoshima H, Oshima T (2010) Facile and scalable synthesis of a highly hydroxylated water-soluble fullerenol as a single nanoparticle. Nano Res 4:204–215. doi:10.1007/s12274-010-0071-z

    Article  Google Scholar 

  29. Webster RD, Heath GA (2001) Voltammetric, EPR and UV–VIS–NIR spectroscopic studies associated with the one-electron oxidation of C60 and C70 in 1,1′,2,2′-tetrachloroethane containing trifluoromethanesulfonic acid. Phys Chem Chem Phys 3:2588–2594. doi:10.1039/b101980p

    Article  CAS  Google Scholar 

  30. Thomann H, Bernardo M, Miller GP (1992) Observation of triplet-state electron spin resonance in oxidized fullerene C60. J Am Chem Soc 114:6593–6594. doi:10.1021/ja00042a069

    Article  CAS  Google Scholar 

  31. Cataldo F (1995) Spectroscopical study on C60 and C70 fullerene solutions in superacids. Spectrochim Acta A Mol Biomol Spectrosc 51:405–414. doi:10.1016/0584-8539(94)e0111-m

    Article  Google Scholar 

  32. Johnson CD (1975) Linear free energy relations and the reactivity-selectivity principle. Chem Rev 75:755–765. doi:10.1021/cr60298a004

    Article  CAS  Google Scholar 

  33. Giese B (1977) Basis and limitations of the reactivity-selectivity principle. Angew Chem Int Ed Engl 16:125–136. doi:10.1002/anie.197701253

    Article  Google Scholar 

  34. Wada Y, Totoki S, Watanabe M, Moriya N, Tsunazawa Y, Shimaoka H (2006) Nanoparticle size analysis with relaxation of induced grating by dielectrophoresis. Opt Express 14:5755. doi:10.1364/oe.14.005755

    Article  Google Scholar 

  35. Hawkins JM, Meyer A, Lewis TA, Loren S, Hollander FJ (1991) Crystal structure of osmylated C60: confirmation of the soccer ball framework. Science 252:312–313. doi:10.1126/science.252.5003.312

    Article  CAS  Google Scholar 

  36. Fagan PJ, Calabrese JC, Malone B (1991) The Chemical nature of buckminsterfullerene (C60) and the characterization of a platinum derivative. Science 252:1160–1161. doi:10.1126/science.252.5009.1160

    Article  CAS  Google Scholar 

  37. Watanabe T, Itoh MF, Komuro T, Okada H, Sakai T, Ono Y, Kawachi K, Kasama Y, Tobita H (2014) Iridium and platinum complexes of Li+@C60. Organometallics 33:608–611. doi:10.1021/om4008899

    Article  CAS  Google Scholar 

  38. Balch AL, Catalano VJ, Lee JW (1991) Accumulating evidence for the selective reactivity of the 6–6 ring fusion of fullerene, C60. Preparation and structure of (η2-C60)Ir(CO)Cl(PPh3)2·5C6H6. Inorg Chem 30:3980–3981. doi:10.1021/ic00021a003

  39. Aoyagi S, Nishibori E, Sawa H, Sugimoto K, Takata M, Miyata Y, Kitaura R, Shinohara H, Okada H, Sakai T, Ono Y, Kawachi K, Yokoo K, Ono S, Omote K, Kasama Y, Ishikawa S, Komuro T, Tobita H (2010) A layered ionic crystal of polar Li@C60 superatoms. Nature Chem 2:678–683. doi:10.1038/nchem.698

    Article  CAS  Google Scholar 

  40. Aoyagi S, Sado Y, Nishibori E, Sawa H, Okada H, Tobita H, Kasama Y, Kitaura R, Shinohara H (2012) Rock-salt-type crystal of thermally contracted C60 with encapsulated lithium cation. Angew Chem Int Ed 51:3377–3381. doi:10.1002/anie.201108551

    Article  CAS  Google Scholar 

  41. Ueno H, Nishihara T, Segawa Y, Itami K (2015) Cycloparaphenylene-based ionic donor-acceptor supramolecule: isolation and characterization of Li+@C60  [10]CPP. Angew Chem Int Ed 54:3707–3711. doi:10.1002/anie.201500544

    Article  CAS  Google Scholar 

  42. Omachi H, Segawa Y, Itami K (2012) Synthesis of cycloparaphenylenes and related carbon nanorings: a step toward the controlled synthesis of carbon nanotubes. Acc Chem Res 45:1378–1389. doi:10.1021/ar300055x

    Article  CAS  Google Scholar 

  43. Hirst ES, Jasti R (2012) Bending benzene: syntheses of [n]cycloparaphenylenes. J Org Chem 77:10473–10478. doi:10.1021/jo302186h

    Article  CAS  Google Scholar 

  44. Yamago S, Kayahara E, Iwamoto T (2014) Organoplatinum-mediated synthesis of cyclic pi-conjugated molecules: towards a new era of three-dimensional aromatic compounds. Chem Rec 14:84–100. doi:10.1002/tcr.201300035

    Article  CAS  Google Scholar 

  45. Iwamoto T, Watanabe Y, Sadahiro T, Haino T, Yamago S (2011) Size-selective encapsulation of C60 by [10]cycloparaphenylene: formation of the shortest fullerene-peapod. Angew Chem Int Ed 50:8342–8344. doi:10.1002/anie.201102302

    Article  CAS  Google Scholar 

  46. Xia J, Bacon JW, Jasti R (2012) Gram-scale synthesis and crystal structures of [8]- and [10]CPP, and the solid-state structure of C60@[10]CPP. Chem Sci 3:3018. doi:10.1039/c2sc20719b

    Article  CAS  Google Scholar 

  47. Kawashima Y, Ohkubo K, Fukuzumi S (2015) Efficient charge separation in Li+@C60 supramolecular complexes with electron donors. Chem Asian J 10:44–54. doi:10.1002/asia.201403075

    Article  CAS  Google Scholar 

  48. Mulliken RS (1952) Molecular compounds and their spectra. II. J Am Chem Soc 74:811–824. doi:10.1021/ja01123a067

    Article  CAS  Google Scholar 

  49. Okada H, Matsuo Y (2014) Anion exchange of Li+@C60 salt for improved solubility. Fuller Nanotub Carbon Nanostruct 22:262–268. doi:10.1080/1536383X.2013.812639

    Article  CAS  Google Scholar 

  50. Schroeder W, Katz L (1954) The use of silver oxide in the preparation of diaryldiazomethanes. J Org Chem 19:718–720. doi:10.1021/jo01370a003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Matsuo .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd

About this chapter

Cite this chapter

Matsuo, Y., Okada, H., Ueno, H. (2017). Chemical Modification of Li+@C60 . In: Endohedral Lithium-containing Fullerenes. Springer, Singapore. https://doi.org/10.1007/978-981-10-5004-6_5

Download citation

Publish with us

Policies and ethics