Skip to main content

Numerical Modeling of Pavement Slab Subjected to Blast Loading

  • Chapter
  • First Online:
Multi-layer Pavement System under Blast Load

Part of the book series: Springer Tracts in Civil Engineering ((SPRTRCIENG))

  • 604 Accesses

Abstract

The numerical analysis of the conventional pavement system and the proposed multi-layer pavement system under blast load will be conducted. The key results from numerical models will be discussed based on the parametric study for the proposed multi-layer pavement system. The design chart for proposed multi-layer pavement system under different blast energies will be further developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • AUTODYN (2003). Theory Manual, Century Dynamics, Inc

    Google Scholar 

  • Benson DJ (1992) Computational methods in lagrangian and eulerian hydrocodes. Comput Methods Appl Mech Eng 99:235–394

    Article  MathSciNet  Google Scholar 

  • Bessette G C, Littlefield DL (1998) Analysis of transverse loading in long-rod penetrations by oblique plates. shock compression of condensed matter. American Institute of Physics Press, New York, S 937–940

    Google Scholar 

  • Bischoff P, Perry S (1991) Compressive Behaviour of Concrete at High Strain Rates. Materials and Structures, 24(6):425–450

    Google Scholar 

  • CEB-FIP (2008) Constitutive modelling of high strength/high performance concrete

    Google Scholar 

  • Chen WF (1982) Constitutive equations for engineering materials. Wiley, New York

    Google Scholar 

  • Chen WF (1994) Constitutive Equations for Engineered Materials Vol 2 Plasticity and Modeling, Elsevier Science B.V. Amsterdam, The Netherlands

    Google Scholar 

  • Comite Euro-International du Beton (1993) CEP-FIP Model Code 1990. Redwood Books, Trowbridge

    Book  Google Scholar 

  • Gebbeken N, Greulich S, Pietzsch A (2006) Hugoniot properties for concrete determined by full-scale detonation experiments and flyer-plate-impact test. Int J Impact Eng 32:2017–2031

    Article  Google Scholar 

  • Hansson H, Skoglund P, Unosson M (2001) Structural protection for stationary/mobile tactical behaviour weapons and protection, Tumba

    Google Scholar 

  • Malvar LJ, Crawford JE, Wesevich JW (1996) A new concrete material model for DYNA3D release II: shear dilation and directional rate enhancements. Defense Nuclear Agency, Alexandria

    Google Scholar 

  • Karihaloo BL, Nallathambi P (1990) Effective crack model for the determination of fracture toughness (K eic ) of concrete. Eng Fract Mech 35(4/5):637–645

    Article  Google Scholar 

  • Kim KW, Hussein ME (1997) Variation of fracture toughness of asphalt concrete under low temperature. Constr Build Mater 11:403–411

    Article  Google Scholar 

  • Lee SC (2006). Finite element modeling of hybrid-fiber ecc targets subjected to impact and blast. Ph.D Thesis, National University of Singapore

    Google Scholar 

  • Li QM, Meng H (2003) About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. Int J Solids Struct 40:343–360

    Article  Google Scholar 

  • Lok TS, Pei JS (1997) Steel fibre reinforced concrete panels subjected to blast loading. Proceeding of 8th international symposium on interaction of the effect of munitions with structures. McLean, VA, USA. IB: 701–711

    Google Scholar 

  • Loria M, Hopperstad OS, Borvik T, Berstad T (2008) Numercial Predictions of Ballistic Limit for Concrete Slabs Using a Modified Version of the HJC Concrete Model. Int J of Impact Eng 35:290–303

    Google Scholar 

  • LSDYNA (2007). LSDYNA keyword user’s manual, livermore software technology corporation (LSTC). Livermore, California.

    Google Scholar 

  • Lu YB, Li QM (2011) About the dynamic uniaxial tensile strength of concrete-like materials. Int J Impact Eng 38:171–180

    Article  Google Scholar 

  • Maalej M, Quek ST, Zhang J (2005) Behavior of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and projectile impact. J Mater Civ Eng 17(2):143–152

    Article  Google Scholar 

  • Magallanes JM et al. (2010) Recent improvements to release III of the K&C concrete model. 11th international LSDYNA users conference. Detroit, USA. 3: 37–48

    Google Scholar 

  • Malvar LJ, Crawford JE (1998) Dynamic increase factors for steel reinforcing bars twenty-eighth department of defense explosives safety seminar Orlando. Macmillan Publishers, FL, USA

    Google Scholar 

  • Malvar LJ, Ross CA (1998) Review of strain rate effects for concrete in tension. ACI Material Journal 95(6):735–739

    Google Scholar 

  • Malvar LJ et al (1997) A plasticity concrete material model for DYNA3D. Int J Impact Eng 19(9–10):847–873

    Article  Google Scholar 

  • Nyström U, Gylltoft K (2011) Comparative numerical studies of projectile impacts on plain and steel-fibre reinforced concrete. Int J Impact Eng 38:95–105

    Article  Google Scholar 

  • Ottosen NS, Ristinmaa M (2005) The mechanics of constitutive modeling. Elsevier, Amsterdam.

    Google Scholar 

  • Park DW et al (2005) Characterization of permanent deformation of an asphalt mixture using a mechanistic approach. KSCE J Civ Eng 9(3):213–218

    Article  Google Scholar 

  • Ross CA, Jerome DM, Tedesco JW (1996) Moisture and strain rate effects on concrete strength. ACI Mater J 93(3):293–300

    Google Scholar 

  • Ross CA, Thompson PY, Tedesco JW (1989) Split-hopkinson pressure bar test on concrete strength. ACI Mater J 86(5):475–481

    Google Scholar 

  • Sadd MH et al (2007) Interfacial failure behavior of concrete-asphalt bi-materials. sem annual conference and exposition on experimental and applied mechanics: 1421–1430

    Google Scholar 

  • Schwerv LE, Day J (1991) Computational techniques for penetration of concrete and steel targets by oblique impact of deformable projectiles. Nucl Eng Des 125(2): 215–238

    Google Scholar 

  • Seibi AC et al (2001) Constitutive relations for asphalt concrete under high rates of loading. transportation research record 1767. Washington D.C, National Research Council, S 111–119

    Google Scholar 

  • Showichen A (2008) Numerical analysis of vehicle bottom structures subjected to anti-tank mine explosions. Ph.D thesis PhD, Cranfield University

    Google Scholar 

  • Tan SA., Low BH, Fwa TF (1994) Behavior of Asphalt Concrete Mixtures in Triaxial Compression. Journal of Testing and Evaluation 22(3): 195–203

    Google Scholar 

  • Tang WH, Ding YQ, Yuan XY (2009) The HJC model parameters of an asphalt mixture. DYMAT 2009 – 9th international conference on the mechanical and physical behaviour of materials under dynamic loading. 2: 1419–1423

    Google Scholar 

  • Tashman L et al (2005) A microstructure-based viscoplastic model for asphalt concrete. Int J Plast 21:1659–1685

    Article  Google Scholar 

  • Tekalur SA et al (2009) Mechanical characterization of a bituminous mix under quasi-static and high-strain rate loading. Constr Build Mater 23:1795–1802

    Article  Google Scholar 

  • Wang F Lim, CH, Soh TB (2010) Explosive testing, numerical and analytical modelling of a modular blast wall system. The 3rd international conference on design and analysis of protective structures. Singapore: 392–401

    Google Scholar 

  • Wang S (2011) Experimental and numercial studies on behavior of plain and fiber-reinforced high strength concrete subjected to high strain rate loading. Ph.D Thesis, National University of Singapore

    Google Scholar 

  • Whirley RG, Engelmann BE (1992) Slidesurfaces with adaptive new definitions (sand) for transient analysis. winter annual meeting of the american society of mechanical engineers Anaheim, California ASME: 65–71

    Google Scholar 

  • Wright A, French M (2008) The response of carbon fibre composites to blast loading via the Europa CAFV programme. J Mater Sci 43:6619–6629

    Article  Google Scholar 

  • Xiao H (2009) Yielding and failure of cement treated soil. Ph.D Thesis, National University of Singapore

    Google Scholar 

  • Zhou XQ, Hao H (2008) Modelling of compressive behaviour of concrete-like materials. Int J Solids Struct 45:4648–4661

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, J., Wu, H., Tan, H.W.A., Chew, S.H. (2018). Numerical Modeling of Pavement Slab Subjected to Blast Loading. In: Multi-layer Pavement System under Blast Load. Springer Tracts in Civil Engineering . Springer, Singapore. https://doi.org/10.1007/978-981-10-5001-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-5001-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-5000-8

  • Online ISBN: 978-981-10-5001-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics