Skip to main content

Notch Ligands for Lymphocyte Development

  • Chapter
  • First Online:
Notch Signaling
  • 519 Accesses

Abstract

Although Notch signaling is well known to be critical for the specification of cell fate in various developing organs, it has not been fully defined how Notch ligands contribute to triggering through the Notch receptor in those organs, particularly in hematopoietic and lymphoid organs. The timing of the appearance of Notch ligands on the cell surface is thought to be crucial for the triggering between two equivalent progenitors in the lateral inhibition model. By contrast, the features of the Notch-regulating system, in which the Notch ligand functions as an environment factor, can be determined by the cell source of the Notch ligand that is frequently observed in hematopoietic and lymphoid organs. This review focuses on each Notch ligand and its cell source for lymphocyte development; moreover, it emphasizes the characteristics of the bone marrow, thymus, and secondary lymphoid organs based on the Notch system. In particular, the results obtained from the loss-of-function experiments using the defined Cre transgenic mice that are specifically active in the environment are described. In addition, the shared and intrinsic properties, including the structure and function of Notch ligands, are also described. These may be helpful for understanding the physiological significance of Notch ligands and their mediated signaling for the regulation of the lymphoid system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe N, Hozumi K, Hirano K et al (2010) Notch ligands transduce different magnitudes of signaling critical for determination of T-cell fate. Eur J Immunol 40:2608–2617

    Article  CAS  PubMed  Google Scholar 

  • Amsen D, Blander JM, Ryol Lee G et al (2004) Instruction of distinct CD4 T helper cell fates by different Notch ligands on antigen-presenting cells. Cell 117:515–526

    Article  CAS  PubMed  Google Scholar 

  • Andrawes MB, Xu X, Liu H et al (2013) Intrinsic selectivity of Notch1 for Delta-like 4 over Delta-like 1. J Biol Chem 288:25477–25489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnon TI, Horton RM, Grigorova IL et al (2013) Visualization of splenic marginal zone B-cell shuttling and follicular B-cell egress. Nature 493:684–688

    Article  CAS  PubMed  Google Scholar 

  • Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776

    Article  CAS  PubMed  Google Scholar 

  • Artis D, Spits H (2015) The biology of innate lymphoid cells. Nature 517:293–301

    Article  CAS  PubMed  Google Scholar 

  • Auderset F, Schuster S, Fasnacht N et al (2013) Notch signaling regulates follicular helper T cell differentiation. J Immunol 191:2344–2350

    Article  CAS  PubMed  Google Scholar 

  • Backer RA, Helbig C, Gentek R et al (2014) A central role for Notch in effector CD8+ T cell differentiation. Nat Immunol 15:1143–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailis W, Yshiro-Ohtani Y, Fang TC et al (2013) Notch simultaneously orchestrates multiple helper T cell programs independently of cytokine signals. Immunity 39:148–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Besseyrias V, Fiorini E, Strobl LJ et al (2007) Hierarchy of Notch-Delta interactions promoting T cell lineage commitment and maturation. J Exp Med 204:331–343

    Article  PubMed  PubMed Central  Google Scholar 

  • Bray SJ (2006) Notch signaling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7:678–689

    Article  CAS  PubMed  Google Scholar 

  • Brückner K, Perez L, Clausen H et al (2000) Glycosyltransferase activity of fringe modulates Notch-Delta interaction. Nature 406:411–415

    Article  PubMed  Google Scholar 

  • Calvi LM, Adams GB, Weibrecht KW et al (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425:841–846

    Article  CAS  PubMed  Google Scholar 

  • Charbonnier L, Wang S, Georgiev P et al (2015) Control of peripheral tolerance by regulatory T cell-intrinsic Notch signaling. Nat Immunol 16:1162–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chillakuri CR, Sheppard D, Lea SM et al (2012) Notch receptor-ligand binding and activation: insights from molecular studies. Sem Cell Dev Biol 23:421–428

    Article  CAS  Google Scholar 

  • Cinamon G, Zachariah MA, Lam OM et al (2008) Follicular shuttling of marginal zone B cells facilitates antigen transport. Nat Immunol 9:54–62

    Article  CAS  PubMed  Google Scholar 

  • Ciofani M, Zúñiga-Pflücker JC (2005) Notch promotes survival of pre-T cells at the b-selection checkpoint by regulating cellular metabolism. Nat Immunol 6:881–888

    Article  CAS  PubMed  Google Scholar 

  • Cordle J, Johnson S, Tay JZY et al (2008) A conserved face of the Jagged/Serrate DSL domain is involved in Notch trans-activation and cis-inhibition. Nat Struct Mol Biol 15:849–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cretney E, Kallies A, Nutt SL (2013) Differentiation and function of Foxp3+ effector regulatory T cells. Trends Immunol 34:74–80

    Article  CAS  PubMed  Google Scholar 

  • Deblandre GA, Lai EC, Kintner C (2001) Xenopus neuralized is a ubiquitin ligase that interacts with XDelta1 and regulates Notch signaling. Dev Cell 1:795–806

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495:231–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fasnacht N, Huang H, Koch U et al (2014) Specific fibroblastic niches in secondary lymphoid organs orchestrate distinct Notch-regulated immune responses. J Exp Med 211:2265–2279

    Article  PubMed  PubMed Central  Google Scholar 

  • Fortini ME (2000) Fringe benefits to carbohydrates. Nature 406:357–358

    Article  CAS  PubMed  Google Scholar 

  • Greenbaum A, Hsu YS, Day RB et al (2013) CXCL12 in early mesenchymal progenitors is required for hematopoietic stem-cell maintenance. Nature 495:227–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenwald I, Rubin GM (1992) Making a difference: the role of cell-cell interactions in establishing separate identities for equivalent cells. Cell 68:271–281

    Article  CAS  PubMed  Google Scholar 

  • Heinzel K, Benz C, Martins VC et al (2007) Bone marrow-derived hematopoietic precursors commit to the T cell lineage only after arrival in the thymic microenvironment. J Immunol 178:858–868

    Article  CAS  PubMed  Google Scholar 

  • Heuss SF, Ndiaye-Lobry D, Six EM et al (2008) The intracellular region of Notch ligands Dll1 and Dll3 regulates their trafficking and signaling activity. Pro Nat Acad Sci USA 105:11212–11217

    Article  CAS  Google Scholar 

  • Hicks C, Johnston SH, diSibio G et al (2000) Fringe differentially modulates Jagged1 and Delta1 signaling through Notch1 and Notch2. Nat Cell Biol 2:515–520

    Article  CAS  PubMed  Google Scholar 

  • Hirano K, Negishi N, Yazawa M et al (2015) Delta-like 4-mediated Notch signaling is required for early T cell development in a three-dimensional thymic structure. Eur J Immunol 45:2252–2262

    Article  CAS  PubMed  Google Scholar 

  • Hofmann JJ, Zovein AC, Koh H et al (2010) Jagged1 in the portal vein mesenchyme regulates intrahepatic bile duct development: insights into Alagille syndrome. Development 137:4061–4072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hozumi K, Abe N, Chiba S et al (2003) Active form of Notch members can enforce T lymphopoiesis on lymphoid progenitors in the monolayer culture specific for B cell development. J Immunol 170:4973–4979

    Article  CAS  PubMed  Google Scholar 

  • Hozumi K, Negishi N, Suzuki D et al (2004) Delta-like 1 is necessary for the generation of marginal zone B cells but not T cells in vivo. Nat Immunol 6:638–644

    Article  Google Scholar 

  • Hozumi K, Mailhos C, Negishi N et al (2008) Delta-like 4 is indispensable in thymic environment specific for T cell development. J Exp Med 205:2507–2513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikawa T, Hirose S, Masuda K et al (2010) An essential developmental checkpoint for production of the T cell lineage. Science 329:93–96

    Article  CAS  PubMed  Google Scholar 

  • Itoh M, Kim CH, Palardy G et al (2003) Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta. Dev Cell 4:67–82

    Article  CAS  PubMed  Google Scholar 

  • Kawaguchi D, Furutachi S, Kawai H et al (2013) Dll1 maintains quiescence of adult neural stem cells and segregates asymmetrically during mitosis. Nat Commun 4:1880. doi:10.1038/ncomms2895

    Article  PubMed  PubMed Central  Google Scholar 

  • Kershaw NJ, Church NL, Griffin MDW et al (2015) Notch ligand delta-like 1: X-ray crystal structure and binding affinity. Biochem J 468:159–166

    Article  CAS  PubMed  Google Scholar 

  • Koch U, Lacombe TA, Holland D et al (2001) Subversion of the T/B lineage decision in the thymus by lunatic fringe-mediated inhibition of Notch-1. Immunity 15:225–236

    Article  CAS  PubMed  Google Scholar 

  • Koch U, Fiorini E, Benedito R et al (2008) Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J Exp Med 205:2515–2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu H, Chao MY, Larkins-Ford J et al (2008) OSM-11 facilitates LIN-12 Notch signaling during Caenorhabditis elegans vulval development. Plos Biol 6:w196. doi:10.1371/journal.pbio.0060196

    Article  Google Scholar 

  • Koo BK, Lim HS, Song R et al (2005) Mind bomb 1 is essential for generating functional Notch ligands to activate Notch. Development 132:3459–3470

    Article  CAS  PubMed  Google Scholar 

  • Koo BK, Yoon MJ, Yoon KJ et al (2007) An obligatory role of mind bomb-1 in Notch signaling of mammalian development. Plos One 2:e1221. doi:10.1371/journal.pone.0001221

    Article  PubMed  PubMed Central  Google Scholar 

  • Kopan R, Ilagan MXG (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreslavsky T, Gleimer M, Miyazaki M et al (2012) b-Selection-induced proliferation is required for ab T cell differentiation. Immunity 33:1–14

    Google Scholar 

  • Ladi E, Nichols JT, Ge W et al (2005) The divergent DSL ligand Dll3 does not activate Notch signaling but cell autonomously attenuates signaling induced by other DSL ligands. J Cell Biol 170:983–992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai EC, Deblandre GA, Kintner C et al (2001) Drosophila neuralized is a ubiquitin ligase that promotes the internalization and degradation of delta. Dev Cell 1:783–794

    Article  CAS  PubMed  Google Scholar 

  • Laky K, Evans S, Perez-Diez A et al (2015) Notch signaling regulates antigen sensitivity of naïve CD4+ T cells by tuning co-stimulation. Immunity 42:80–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Maeda M, Ishikawa Y et al (2013) LRF-mediated Dll4 repression in erythroblasts is necessary for hematopoietic stem cell maintenance. Blood 121:918–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis J (1998) Notch signaling and the control of cell fate choices in vertebrates. Sem Cell Dev Biol 9:583–589

    Article  CAS  Google Scholar 

  • Lewis KL, Caton ML, Bogunovic M et al (2011) Notch2 Receptor Signaling Controls Functional Differentiation of Dendritic Cells in the Spleen and Intestine. Immunity 35:780–791

    Google Scholar 

  • Liu H, Chi AW, Arnett KL et al (2010) Notch dimerization is required for leukemogenesis and T-cell development. Gene Dev 24:2395–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luca VC, Jude KM, Pierce NW et al (2015) Structural basis for Notch1 engagement of Delta-like 4. Science 347:847–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda T, Merghoub T, Hobbs RM et al (2007) Regulation of B versus T lymphoid lineage fate decision by the proto-oncogene LRF. Science 316:860–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maekawa Y, Tsukumo S, Chiba S et al (2003) Delta1-Notch3 interactions bias the functional differentiation of activated CD4+ T cells. Immunity 19:549–559

    Article  CAS  PubMed  Google Scholar 

  • Maekawa Y, Minato Y, Ishifune C et al (2008) Notch2 integrates signaling by the transcription factors RBP-J and CREB1 to promote T cell cytotoxicity. Nat Immunol 9:1140–1147

    Article  CAS  PubMed  Google Scholar 

  • Maekawa Y, Ishifune C, Tsukumo S et al (2015) Notch controls the survival of memory CD4+ T cells by regulating glucose uptake. Nat Med 21:55–61

    Article  CAS  PubMed  Google Scholar 

  • Maillard I, Tu L, Sambandam A et al (2006) The requirement for Notch signaling at the b-selection checkpoint in vivo is absolute and independent of the pre-T cell receptor. J Exp Med 203:2239–2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maillard I, Koch U, Dumortier A et al (2008) Canonical Notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell 2:356–366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mancini SJ, Mantei N, Dumortier A et al (2005) Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation. Blood 105:2340–2342

    Article  CAS  PubMed  Google Scholar 

  • Meloty-Kapella L, Shergill B, Kuon J et al (2012) Notch ligand endocytosis generates mechanical pulling force dependent on dynamin, epsin and actin. Dev Cell 22:1299–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mochizuki K, Xie F, He Q et al (2013) Delta-like ligand 4 identifies a previously uncharacterized population of inflammatory dendritic cells that plays important roles in eliciting allogeneic T cell responses in mice. J Immunol 190:3772–3782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moloney DJ, Panin VM, Johnston SH et al (2000) Fringe is a glycosyltransferase that modifies Notch. Nature 406:369–375

    Article  CAS  PubMed  Google Scholar 

  • Morimoto M, Nishinakamura R, Saga Y et al (2012) Different assemblies of Notch receptors coordinate the distribution of the major bronchial Clara, ciliated and neuroendocrine cells. Development 139:4365–4373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musse AA, Meloty-Kappella L, Weinmaster G (2012) Notch ligand endocytosis: Mechanistic basis of signaling activity. Sem Cell Dev Biol 23:429–236

    Article  CAS  Google Scholar 

  • Nakano Y, Negishi N, Gocho S et al (2015) Disappearance of centroacinar cells in the Notch ligand-deficient pancreas. Genes Cells 20:500–511

    Article  CAS  PubMed  Google Scholar 

  • Okano M, Matsuo H, Nishimura Y et al (2016) Mib1 modulates dynamin 2 recruitment via Snx18 to promote Dll1 endocytosis for efficient Notch signaling. Genes Cells. doi:10.1111/gtc.12350

  • Pavlopoulos E, Pitsouli C, Klueg KM et al (2001) Neuralized encodes a peripheral membrane protein involved in delta signaling and endocytosis. Dev Cell 1:807–816

    Article  CAS  PubMed  Google Scholar 

  • Pintar A, Guarnaccia C, Dhir S et al (2009) Exon 6 of human JAG1 encodes a conserved structure unit. BMC Struct Biol 9:43. doi:10.1186/1472-6807-9-43

    Article  PubMed  PubMed Central  Google Scholar 

  • Porrit HE, Rumfelt LL, Tabrizifard S et al (2004) Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages. Immunity 20:735–745

    Article  Google Scholar 

  • Poulos MG, Guo P, Kofler NM et al (2013) Endothelial Jagged-1 is necessary for homeostatic and regenerative hematopoiesis. Cell Rep 4:1022–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pui JC, Allman D, Xu L et al (1999) Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11:299–308

    Article  CAS  PubMed  Google Scholar 

  • Radtke F, Wilson A, Stark G et al (1999) Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10:547–558

    Article  CAS  PubMed  Google Scholar 

  • Robey E, Chang D, Itano A et al (1996) An activated form of Notch influences the choice between CD4 and CD8 T cell lineages. Cell 87:483–492

    Article  CAS  PubMed  Google Scholar 

  • Saito T, Chiba S, Ichikawa M et al (2003) Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity 18:675–685

    Article  CAS  PubMed  Google Scholar 

  • Sancho R, Cremona CA, Behrens A (2015) Stem cell and progenitor fate in the mammalian intestine: Notch and lateral inhibition in homeostasis and disease. EMBO Rep 16:571–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmitt TM, Zúñiga-Pflücker JC (2002) Induction of T cell development from hematopoietic progenitor cells by Delta-like-1. Immunity 17:749–756

    Article  CAS  PubMed  Google Scholar 

  • Seugnet L, Simpson P, Haenlin M (1997) Requirement for dynamin during Notch signaling in Drosophila neurogenesis. Dev Biol 192:585–598

    Article  CAS  PubMed  Google Scholar 

  • Shih HP, Kopp JL, Sandhu M et al (2012) A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation. Development 139:2488–2499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu K, Chiba S, Kumano K et al (1999) Mouse Jagged1 physically interacts with Notch2 and other Notch receptors. J Biol Chem 46:32961–32969

    Article  Google Scholar 

  • Sugiyama T, Kohara H, Noda M et al (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25:977–988

    Article  CAS  PubMed  Google Scholar 

  • Tanigaki K, Han H, Yamamoto N et al (2002) Notch-Rbpj signaling is involved in cell fate determination of marginal zone B cells. Nat Immunol 3:443–450

    Article  CAS  PubMed  Google Scholar 

  • Tanigaki K, Tsuji M, Yamamoto N et al (2004) Regulation of ab/gd T cell lineage commitment and peripheral T cell responses by Notch/Rbpj signaling. Immunity 20:611–622

    Article  CAS  PubMed  Google Scholar 

  • Tsukumo S, Hirose K, Maekawa Y et al (2006) Lunatic fringe controls T cell differentiation through modulating Notch signaling. J Immunol 177:8365–8371

    Article  CAS  PubMed  Google Scholar 

  • Tran IT, Sandy AR, Carulli AJ et al (2013) Blockade of individual Notch ligands and receptors controls graft-versus-host disease. J Clin Invest 123:1590–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu L, Fang TC, Artis D et al (2005) Notch signaling is an important regulator of type 2 immunity. J Exp Med 202:1037–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visan I, Tan JB, Yuan JS et al (2006) Regulation of T lymphopoiesis by Notch1 and lunatic fringe-mediated competition for intrathymic niches. Nat Immunol 6:634–643

    Article  Google Scholar 

  • Vooijs M, Liu Z, Kopan R (2011) Notch: architect, landscaper, and guardian of the intestine. Gastroenterol 141:448–459

    Article  Google Scholar 

  • Washburn T, Schweighoffer E, Gridley T et al (1997) Notch activity influences the alphabeta versus gammadelta T cell lineage decision. Cell 88:833–843

    Article  CAS  PubMed  Google Scholar 

  • Weinmaster G, Fischer JA (2011) Notch ligand ubiquitylation: what is it good for? Dev Cell 21:134–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wendland B (2002) Epsins: adaptors in endocytosis? Nat Rev Mol Cell Biol 3:971–977

    Article  CAS  PubMed  Google Scholar 

  • Wolfer A, Bakker T, Wilson A et al (2001) Inactivation of Notch1 in immature thymocytes does not perturb CD4 or CD8 T cell development. Nat Immunol 2:235–241

    Article  CAS  PubMed  Google Scholar 

  • Wolfer A, Wilson A, Nemir M et al (2002) Inactivation of Notch1 impairs VDJb rearrangement and allows pre-TCR-independent survival of early ab lineage thymocytes. Immunity 16:869–879

    Article  CAS  PubMed  Google Scholar 

  • Wong GW, Knowles GC, Mak TW et al (2012) HES1 opposes a PTEN-dependent check on survival, differentiation, and proliferation of TCRb-selected mouse thymocytes. Blood 120:1439–1448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Nichols JT, Yao C et al (2005) Fringe glycosyltransferases differentially modulate Notch1 proteolysis induced by Delta1 and Jagged1. Mol Biol Cells 16:927–942

    Article  CAS  Google Scholar 

  • Yang Q, Monticelli LA, Saenz SA et al (2013) T cell factor 1 is required for group 2 innate lymphoid cell generation. Immunity 38:694–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh E, Dermer M, Commisso C et al (2001) Neuralized functions as an E3 ubiquitin ligase during Drosophila development. Curr Biol 11:1675–1679

    Article  CAS  PubMed  Google Scholar 

  • Yu VWC, Saez B, Cook C et al (2015) Specific bone cells produce DLL4 to generate thymus-seeding progenitors from bone marrow. J Exp Med 212:759–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Sandy AR, Wang J et al (2011) Notch signaling is a critical regulator of allogeneic CD4+ T-cell responses mediating graft-versus-host disease. Blood 117:299–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuto Hozumi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Hozumi, K. (2017). Notch Ligands for Lymphocyte Development. In: Yasutomo, K. (eds) Notch Signaling. Springer, Singapore. https://doi.org/10.1007/978-981-10-4971-2_1

Download citation

Publish with us

Policies and ethics