Skip to main content

Higher-Order Nucleic Acid Structures

  • Chapter
  • First Online:
Introduction to Biomolecular Structure and Biophysics
  • 1684 Accesses

Abstract

The nucleic acids are capable of organizing in variety of noncanonical structures. In this chapter we will highlight the different structures adopted by nucleic acids, forces stabilizing these structures, and their biological significance. The ability of DNA and RNA to organize into three-stranded structures has been utilized in various therapeutic applications. Also the four-stranded structures assumed by G- and C-rich nucleic acid sequences have been exploited in nanotechnology. A special focus has been laid here on the nature of telomeric DNA and its role in cancer and aging. We have further discussed the biophysical approaches to measure the thermodynamic parameters determining the stability of triplex and quadruplex structures. The chapter also describes the RNA tertiary interactions such as coaxial stacking, tetraloop–receptor interactions, A-minor motifs, and ribose zippers responsible for folding, stability, and maintenance of RNA three-dimensional structure. Finally, the interactions responsible for higher-order chromatin structures assumed by eukaryotic and bacterial DNA are presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Batey RT, Rambo RP, Doudna JA (1999) Tertiary motifs in RNA structure and folding. Angew Chem Int Ed 38(16):2326–2343

    Article  CAS  Google Scholar 

  • Blackburn EH, Gall JG (1978) A tandemly repeated sequence at the termini of the extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol 120(1):33–53

    Article  CAS  PubMed  Google Scholar 

  • Cate JH, Gooding AR, Podell E, Zhou K, Golden BL, Kundrot CE et al (1996) Crystal structure of a group I ribozyme domain: principles of RNA packing. Science 273(5282):1678–1685

    Article  CAS  PubMed  Google Scholar 

  • Chan PP, Glazer PM (1997) Triplex DNA: fundamentals, advances, and potential applications for gene therapy. J Mol Med 75(4):267–282

    Article  CAS  PubMed  Google Scholar 

  • Day HA, Pavlou P, Waller ZA (2014) i-Motif DNA: structure, stability and targeting with ligands. Bioorg Med Chem 22(16):4407–4418

    Article  CAS  PubMed  Google Scholar 

  • Devi G, Zhou Y, Zhong Z, Toh DFK, Chen G (2015) RNA triplexes: from structural principles to biological and biotech applications. Wiley Interdiscip Rev RNA 6(1):111–128

    Article  CAS  PubMed  Google Scholar 

  • Donate LE, Blasco MA (2011) Telomeres in cancer and ageing. Philos Trans R Soc B 366(1561):76–84

    Article  CAS  Google Scholar 

  • Dong Y, Yang Z, Liu D (2014) DNA nanotechnology based on i-motif structures. Acc Chem Res 47(6):1853–1860

    Article  CAS  PubMed  Google Scholar 

  • Felsenfeld G, Groudine M (2003) Controlling the double helix. Nature 421(6921):448–453

    Article  PubMed  Google Scholar 

  • Fricker J (1998) Triplex DNA as a novel diagnostic tool. Mol Med Today 4(4):140–141

    Article  CAS  PubMed  Google Scholar 

  • Greider CW, Blackburn EH (1985) Identification of a specific telomere terminal transferase activity in tetrahymena extracts. Cell 43(2):405–413

    Article  CAS  PubMed  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25(3):585–621

    Article  CAS  PubMed  Google Scholar 

  • Hou X, Guo W, Xia F, Nie FQ, Dong H, Tian Y et al (2009) A biomimetic potassium responsive nanochannel: G-quadruplex DNA conformational switching in a synthetic nanopore. J Am Chem Soc 131(22):7800–7805

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Wang G, Vasquez KM (2008) DNA triple helices: biological consequences and therapeutic potential. Biochimie 90(8):1117–1130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laing C, Wen D, Wang JT, Schlick T (2012) Predicting coaxial helical stacking in RNA junctions. Nucleic Acids Res 40(2):487–498

    Article  CAS  PubMed  Google Scholar 

  • Lane AN, Chaires JB, Gray RD, Trent JO (2008) Stability and kinetics of G-quadruplex structures. Nucleic Acids Res 36(17):5482–5515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mergny JL, Lacroix L (2009) UV melting of G-quadruplexes. Curr Protoc Nucleic Acid Chem:17–11

    Google Scholar 

  • Mirkin SM (2001) DNA topology: fundamentals. eLS

    Google Scholar 

  • Murat P, Balasubramanian S (2014) Existence and consequences of G-quadruplex structures in DNA. Curr Opin Genet Dev 25:22–29

    Article  CAS  PubMed  Google Scholar 

  • Murat P, Singh Y, Defrancq E (2011) Methods for investigating G-quadruplex DNA/ligand interactions. Chem Soc Rev 40(11):5293–5307

    Article  CAS  PubMed  Google Scholar 

  • Nandakumar J, Cech TR (2013) Finding the end: recruitment of telomerase to telomeres. Nat Rev Mol Cell Biol 14(2):69–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nissen P, Ippolito JA, Ban N, Moore PB, Steitz TA (2001) RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc Natl Acad Sci 98(9):4899–4903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olovnikov AM (1973) A theory of marginotomy: the incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. J Theor Biol 41(1):181–190

    Article  CAS  PubMed  Google Scholar 

  • Rhodes D, Lipps HJ (2015) G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res 43(18):8627–8637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scaria PV, Will S, Levenson C, Shafer RH (1995) Physicochemical studies of the d (G3T4G3)* d (G3A4G3) d (C3T4C3) triple helix. J Biol Chem 270(13):7295–7303

    Article  CAS  PubMed  Google Scholar 

  • Shafer RH (1997) Stability and structure of model DNA triplexes and quadruplexes and their interactions with small ligands. Prog Nucleic Acid Res Mol Biol 59:55–94

    Article  Google Scholar 

  • Simonsson T (2001) G-quadruplex DNA structures variations on a theme. Biol Chem 382(4):621–628

    Article  CAS  PubMed  Google Scholar 

  • Szostak JW, Blackburn EH (1982) Cloning yeast telomeres on linear plasmid vectors. Cell 29(1):245–255

    Article  CAS  PubMed  Google Scholar 

  • Tamura M, Holbrook SR (2002) Sequence and structural conservation in RNA ribose zippers. J Mol Biol 320(3):455–474

    Article  CAS  PubMed  Google Scholar 

  • Topal MD, Fresco JR (1976) Complementary base pairing and the origin of substitution mutations. Nature 263(5575):285–289

    Article  CAS  PubMed  Google Scholar 

  • Tyagi R, Mathews DH (2007) Predicting helical coaxial stacking in RNA multibranch loops. RNA 13(7):939–951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preeti Arivaradarajan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Arivaradarajan, P. (2017). Higher-Order Nucleic Acid Structures. In: Misra, G. (eds) Introduction to Biomolecular Structure and Biophysics. Springer, Singapore. https://doi.org/10.1007/978-981-10-4968-2_4

Download citation

Publish with us

Policies and ethics