Skip to main content

Competition Aided with Continuous-Time Nonlinear Model

  • Chapter
  • First Online:
Book cover Competition-Based Neural Networks with Robotic Applications

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 784 Accesses

Abstract

In this chapter, different from the model presented in Chap. 1, we present a continuous-time dynamic model, which is described by an ordinary differential equation and is able to produce the winner-take-all competition by taking advantage of selective positive-negative feedback. The global convergence is proven analytically and the convergence rate is also discussed. Simulations are conducted in the static competition and the dynamic competition scenarios. Both theoretical and numerical results validate the effectiveness of the dynamic equation in describing the nonlinear phenomena of winner-take-all competition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dun EA, Ferguson JD, Beveridge CA (2006) Apical dominance and shoot branching. divergent opinions or divergent mechanisms? Plant Physiol 142(3):812–819

    Article  Google Scholar 

  2. Lee DK, Itti L, Koch C, Braun J (1999) Attention activates winner-take-all competition among visual filters. Nat Neurosci 2(4):375–381

    Article  Google Scholar 

  3. Emilio H, Lopez C, Pigolotti S, Andersen K (2008) Species competition: coexistence, exclusion and clustering. Philos Trans R Soc A Math Phys Eng Sci 367(3):3183–3195

    MathSciNet  MATH  Google Scholar 

  4. Jin L, Li S (2017) Distributed task allocation of multiple robots: A control perspective. IEEE Trans Syst Man Cybern: Syst pp(99):1–9

    Article  Google Scholar 

  5. Maass W (2000) On the computational power of winner-take-all. Neural Comput 12(11):2519–2535

    Article  Google Scholar 

  6. Liu S, Wang J (2006) A simplified dual neural network for quadratic programming with its kwta application. IEEE Trans Neural Netw 17(6):1500–1510

    Article  Google Scholar 

  7. Hu X, Wang J (2006) An improved dual neural network for solving a class of quadratic programming problems and its \(k\)-winners-take-all application. IEEE Trans Neural Netw 19(12):2022–2031

    Article  Google Scholar 

  8. Li S, Liu B, Li Y (2013) Selective positive-negative feedback produces the winner-take-all competition in recurrent neural networks. IEEE Trans Neural Netw Learn Syst 24(2):301–309

    Article  MathSciNet  Google Scholar 

  9. Jin L, Zhang Y, Li S, Zhang Y (2016) Modified ZNN for time-varying quadratic programming with inherent tolerance to noises and its application to kinematic redundancy resolution of robot manipulators. IEEE Trans Ind Electron 63(11):6978–6988

    Article  Google Scholar 

  10. Jin L, Zhang Y (2015) Discrete-time Zhang neural network for online time-varying nonlinear optimization with application to manipulator motion generation. IEEE Trans Neural Netw Learn Syst 27(6):1525–1531

    MathSciNet  Google Scholar 

  11. Li S, Zhang Y, Jin L (2016) Kinematic control of redundant manipulators using neural networks. IEEE Trans Neural Netw Learn Syst. doi:10.1109/TNNLS.2016.2574363 (In Press)

  12. Li S, He J, Rafique U, Li Y (2017) Distributed recurrent neural networks for cooperative control of manipulators: a game-theoretic perspective. IEEE Trans Neural Netw Learn Syst 28(2):415–426

    Article  MathSciNet  Google Scholar 

  13. Jin L, Zhang Y, Li S (2016) Integration-enhanced Zhang neural network for real-time varying matrix inversion in the presence of various kinds of noises. IEEE Trans Neural Netw Learn Syst 27(12):2615–2627

    Article  Google Scholar 

  14. Jin L, Zhang Y, Li S, Zhang Y (2017) Noise-tolerant ZNN models for solving time-varying zero-finding problems: a control-theoretic approach. IEEE Trans Autom Control 62(2):577–589

    Article  MathSciNet  Google Scholar 

  15. Jin L, Zhang Y (2016) Continuous and discrete Zhang dynamics for real-time varying nonlinear optimization. Numer Algorithms 73(1):115–140

    Article  MathSciNet  MATH  Google Scholar 

  16. Li S, Li Y (2014) Nonlinearly activated neural network for solving time-varying complex sylvester equation. IEEE Trans Cybern 44(8):1397–1407

    Article  Google Scholar 

  17. Jin L, Li S, La H, Luo X (2017) Manipulability optimization of redundant manipulators using dynamic neural networks. IEEE Trans Ind Electron pp(99):1–10 In press with doi:10.1109/TIE.2017.2674624

  18. Zhang Y, Li S (2017) Predictive suboptimal consensus of multiagent systems with nonlinear dynamics. IEEE Trans Syst Man Cybern: Syst pp(99):1–11, In press with doi:10.1109/TSMC.2017.2668440

  19. Jin L, Zhang Y, Qiu B (2016) Neural network-based discrete-time Z-type model of high accuracy in noisy environments for solving dynamic system of linear equations. Neural Comput Appl. In press with doi:10.1007/s00521-016-2640-x

  20. Li S, Zhou M, Luo X, You Z (2017) Distributed winner-take-all in dynamic networks. IEEE Trans Autom Control 62(2):577–589

    Article  MathSciNet  Google Scholar 

  21. Jin L, Zhang Y (2015) G2-type SRMPC scheme for synchronous manipulation of two redundant robot arms. IEEE Trans Cybern 45(2):153–164

    Article  Google Scholar 

  22. Li S, Cui H, Li Y (2013) Decentralized control of collaborative redundant manipulators with partial command coverage via locally connected recurrent neural networks. Neural Comput Appl 23(1):1051–1060

    Article  MathSciNet  Google Scholar 

  23. Li S, You Z, Guo H, Luo X, Zhao Z (2016) Inverse-free extreme learning machine with optimal information updating. IEEE Trans Cybern 46(5):1229–1241

    Article  Google Scholar 

  24. Khan M, Li S, Wang Q, Shao Z (2016) CPS oriented control design for networked surveillance robots with multiple physical constraints. IEEE Trans Computer-Aided Des Integr Circuits Syst 35(5):778–791

    Article  Google Scholar 

  25. Khan M, Li S, Wang Q, Shao Z (2016) Formation control and tracking for co-operative robots with non-holonomic constraints. J Intell Robot Sys 82(1):163–174

    Article  Google Scholar 

  26. Ramirez-Angulo J, Ducoudray-Acevedo G, Carvajal R, Lopez-Martin A (2005) Low-voltage high-performance voltage-mode and current-mode wta circuits based on flipped voltage followers. IEEE Trans Circuits Syst II: Express Br 52(7):420–423

    Article  Google Scholar 

  27. Benkert C, Anderson DZ (1991) Controlled competitive dynamics in a photorefractive ring oscillator: winner-takes-all and the voting-paradox dynamics. Phys Rev A 44(1):4633–4638

    Article  Google Scholar 

  28. Isidori A (1995) Nonlinear control systems. Springer, New York

    Book  MATH  Google Scholar 

  29. LaSalle JP, Lefschetz S (1973) Stability by Liapunov’s direct method with applications. Academic Press, New York

    Google Scholar 

  30. Khalil H (2002) Nonlinear systems. Prentice Hall, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Li, S., Jin, L. (2018). Competition Aided with Continuous-Time Nonlinear Model. In: Competition-Based Neural Networks with Robotic Applications. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4947-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4947-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4946-0

  • Online ISBN: 978-981-10-4947-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics