Skip to main content

Propagation and Evolution of Transient Water Waves

  • Chapter
  • First Online:
  • 1394 Accesses

Part of the book series: Foundations of Engineering Mechanics ((FOUNDATIONS))

Abstract

This chapter deals with some aspects of the initial-boundary-value problems of the initiation, generation and propagation of tsunami waves. The generation of tsunami waves by bottom movements is considered. We formulate an appropriate initial-boundary-value problem and analyse the effect of the sharpness of vertical axisymmetric bottom disturbance and the disturbance duration on the generation of tsunami waves. The propagation of nonlinear waves on water and their evolution over a nonrigid elastic bottom are investigated. Some aspects and indeterminacy of the formulation of the initial-boundary-value problems dealing with the initiation and generation of tsunami waves are considered. We consider some typical types of tsunami waves that demonstrate the indeterminacy of their initiation in time because of the indeterminacy in the physical trigger mechanism of underwater earthquakes. Based on the three-dimensional formulation, evolution equations describing the propagation of nonlinear dispersive surface waves on water over a spatially inhomogeneous bottom are obtained with allowance for the bottom disturbances in time. We use the Laplace transform with respect to the time coordinate and the power series method with respect to the spatial coordinate to find a solution to the nonstationary problem of the diffraction of surface gravity waves by a radial bottom inhomogeneity that deviates from its initial position. The propagation and stability of nonlinear waves in a two-layer fluid with allowance for surface tension are analysed by the asymptotic method of multiscale expansions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ablowitz, M.J., Segur, H.: Long internal waves in fluids of great depth. Stud. Appl. Maths. 62, 249–262 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aida, I.: Numerical simulation of tsunami generated by landslide of Mt. Mayuyama in 1792. Earthquake 28, 449–460 (1970)

    Google Scholar 

  3. Avramenko, O.V., Gurtovyi, Yu.V., Selezov, I.T.: Kharakternye svoistva rasprostraneniya volnovykh paketov v dvukhsloinoi zhidkosti (Typical features of wave train propagation in a two-layer fluid). Prikladnaya gidromekhanika 11(4), 3–8 (2009)

    Google Scholar 

  4. Avramenko, O.V., Selezov, I.T.: Nonlinear wave propagation in a fluid layer based on a semi-infinite fluid. Dopovidi NAN Ukrainy 10, 61–66 (1997)

    MathSciNet  MATH  Google Scholar 

  5. Bakhanov, V.V., Kropfli, R.A., Ostrovsky, L.A.: On the effect of strong internal waves on surface waves. In: Proceedings of the Geoscience and Remote Sensing Symposium IEEE 1999, vol. 1(1), pp. 170–172 (1999)

    Google Scholar 

  6. Balas, C.E.: Risk assessment for Tuzla naval base breakwater. China Ocean Engineering 17(3), 427–438 (2003)

    Google Scholar 

  7. Benjamin, T.B.: Internal waves of finite amplitude and permanent form. J. Fluid Mech. 25, 241–270 (1966)

    Article  MATH  Google Scholar 

  8. Benjamin, T.B.: Internal waves of permanent form of great depth. J. Fluid Mech. 29, 559–592 (1967)

    Article  MATH  Google Scholar 

  9. Benney, D.J.: Long nonlinear waves in fluid flows. Stud. Appl. Math. 45, 52–63 (1966)

    MATH  Google Scholar 

  10. Bhatnagar, P.L.: Nonlinear Waves in One-Dimensional Dispersive Systems. Clarendon Press, Oxford (1979)

    MATH  Google Scholar 

  11. Braddock, R.D., Van Den Driessche, P., Peady, G.W.: Tsunami generation. J. Fluid Mech. 59(4), 817–828 (1973)

    Article  MATH  Google Scholar 

  12. Brevdo, L.: Three-dimensional logarithmic resonances in a homogeneous elastic wave guide. Eur. J. Mech. A. Solids 19, 121–137 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Buick, J.M., Martin, A.J.: Comparison of a lattice Boltzmann simulation of steep internal waves and laboratory measurements using particle image velocimetry. Eur. J. Mech. B/Fluids 22(1), 27–38 (2003)

    Article  MATH  Google Scholar 

  14. Čadek, O., Yuen, D.A., Čížková, H.: Mantle viscosity inferrred from geoid and seismic tomography by genetic algorithms: results for layered mantle flow. University of Minnesota Supercomputing Inst. Research. Report UMSI 97/118 (1997)

    Google Scholar 

  15. Cagniard, L.: Réflexion et réfraction des ondes séismiques progressives. Gauthier-Villard, Paris (1939), English translation: Flinn, E.A., Dix, C.H. (eds.) Reflection and Refraction of Progressive Seismic Waves. McGraw-Hill, New York (1962)

    Google Scholar 

  16. Camassa, R., Choi, W., Michallet, H., Rusas, P.-O., Sveen, J.: On the realm of validity of strongly nonlinear asymptotic approximations for internal waves. J. Fluid Mech. 549, 1–23 (2006)

    Article  MathSciNet  Google Scholar 

  17. Carr, M., Davies, P.A.: The motion of an internal solitary wave of depression over a fixed bottom boundary in a shallow, two-layer fluid. Phys. Fluids 18, 016601 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cherkesov, L.V.: Gidrodinamika voln (Hydrodynamics of Waves). Naukova Dumka, Kiev (1980)

    Google Scholar 

  19. Choi, J.W., Sun, S.M., Shen, M.C.: Internal capillary-gravity waves of a two-layer fluid with free surface over an obstruction—Forced extended KdV equation. Phys. Fluids 8(2), 397–404 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Choi, W., Camassa, R.: Fully nonlinear internal waves in a two-fluid system. J. Fluid Mech. 396, 1–36 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Davis, R.E., Acrivos, A.: Solitary internal waves in deep water. J. Fluid Mech. 29, 593–607 (1967)

    Article  MATH  Google Scholar 

  22. Debsarma, S., Das, K.P.: Fourth-order nonlinear evolution equations for a capillary-gravity wave packet in the presence of another wave packet in deep water. Phys. Fluids 19, 097101 (2007)

    Article  MATH  Google Scholar 

  23. Dias, F., Il’ichev, A.: Interfacial waves with free-surface boundary conditions: an approach via model equation. Physica D 150, 278–300 (2001)

    Google Scholar 

  24. Ditkin, V.A., Prudnikov, A.P.: Spravochnik po operatsionnomu ischisleniyu (A Handbook on Operational Calculus). Vysshaya Shkola, Moscow (1965)

    MATH  Google Scholar 

  25. Donato, A.N., Peregrine, D.H., Stocker, J.R.: The focusing of surface waves by internal waves. J. Fluid Mech. 384, 27–58 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dotsenko, S.F.: Generatsiya poverkhnostnykh voln pri finitnykh deformatsiyakh dna basseina (Generation of surface waves at finite deformations of the basin bottom). Izvestiya RAN. Mekhanika zhidkosti i gaza 2, 151–156 (1996)

    Google Scholar 

  27. Dzwinel, W., Yuen, D., Kaneko, Y., Boryczko, K., Ben-Zion, Y.: Multi-resolution clustering analysis and 3-D visualization of multitudinous synthetic earthquakes. Vis. Geosci. 8, 12–25 (2003)

    Article  Google Scholar 

  28. Elsasser, W.M.: Convection and stress propagation in the upper mantle. In: Runcorn, W.K. (ed.) The Application of Modern Physics to the Earth and Planetary Interiors, pp. 223–246. Interscience, New York (1969)

    Google Scholar 

  29. Ezerskii, A.B., Papko, V.V.: Laboratornoe issledovanie krupnomasshtabnykh techenii, indutsirovannykh paketom poverkhnostnykh voln (A laboratory investigation of large-scale flows induced by a surface wave train). Izvestiya AN SSSR 22(9), 979–986 (1986)

    Google Scholar 

  30. Feng, W.: Resonant generation of internal waves on the soft bed by a surface water wave. Phys. Fluids 7(8), 1915–1922 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Geist, E.L., Titov, V.V., Synolakis, C.E.: Tsunami: wave of change. Sci. Am. 294, 56–63 (2006)

    Article  Google Scholar 

  32. Goto, C., Tanimoto, K.: A study on the effect of tsunami breakwater by numerical simulation. In: Raufaste, N.J. (ed.) Proceedings of the 23rd Joint Meeting of the U.S.-Japan Cooperative Program in Natural Resources. Panel on Wind and Seismic Effects, vol. 820, pp. 345–349. National Institute of Standards and Technology, Washington (1991)

    Google Scholar 

  33. Grigoriev, A.I., Fedorov, M.S., Shiryaeva, S.O.: Volnovoe dvizhenie v pole sily tyazhesti na svobodnoi poverkhnosti i na granitse stratifikatsii sloisto-neodnorodnoi zhidkosti. Nelineinyi analiz (Wave motion in the gravity force field on a free surface and at the stratification interface of a layered-inhomogeneous fluid. Nonlinear analysis). Izvestiya RAN. Mekhanika zhidkosti i gaza 5, 130–140 (2010)

    Google Scholar 

  34. Grimshaw, R.H.J.: The modulation of an internal gravity-wave packet, and the resonance with the mean motion. Stud. Appl. Math. 56, 241–266 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  35. Grimshaw, R., Pelinovsky, E.: Vzaimodeistvie uedinennykh poverkhnostnykh i vnutrennikh voln s begushchimi vozmushcheniyami (Interactions of surface and internal solitary waves with progressive disturbances). Doklady RAN 344(3), 394–396 (1995)

    Google Scholar 

  36. Grimshaw, R., Pelinovsky, E., Poloukhina, O.: Higher-order Korteweg–de Vries models for internal solitary wave in a stratified shear flow with a free surface. Nonlinear Process. Geophys. 9, 221–235 (2002)

    Article  Google Scholar 

  37. Hammack, J.L., Segur, H.: Modelling criteria for long water waves. J. Fluid Mech. 84(2), 359–373 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hamzah, M.A.: Solitary wave pressure on a barrier. In: Proceedings of the 10th International Offshore and Polar Engineering Conference, USA, Seattle, 28 May–2 June, 2000, pp. 519–523

    Google Scholar 

  39. Hashizume, Y.: Interaction between short surface waves and long internal waves. J. Phys. Soc. Japan 48(2), 631–638 (1980)

    Article  Google Scholar 

  40. Hiraishi, T.: Characteristics of wave overtopping in a harbor induced by Typhoon 9918. In: Proceedings of the 11th International Offshore and Polar Engineering Conference, Stavanger, Norway, 17–22 June 2001, pp. 553–558

    Google Scholar 

  41. Holloway, P., Pelinovsky, E., Talipova, T.: Internal tide transformation and oceanic solitary waves. In: Grimshaw, R. (ed.) Environmental Stratified Flows, chap. 2. Kluwer Academic Publishers (2000)

    Google Scholar 

  42. Jamali, M., Seymour, B., Lawrence, G.A.: Asymptotic analysis of a surface-interfacial wave interaction. Phys. Fluids 15(1), 47–55 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Kajura, K.: The leading wave of a tsunami. Bull. Earthquake Res. Inst. 42, 535–571 (1963)

    Google Scholar 

  44. Karambas, T.V., Tozer, N.P.: Breaking waves in the surf and swash zone. J. Coast. Res. 19(3), 514–528 (2003)

    Google Scholar 

  45. Kubota, T., Ko, D.R.S., Dobbs, L.D.: Propagation of weakly nonlinear internal waves in a stratified fluid of finite depth. J. Hydronaut. 12(4), 157–165 (1978)

    Article  Google Scholar 

  46. Ladbury, R.: Energy budget of deep-focus earthquakes suggests they may be slip-sliding away. Phys. Today 51(4), 19–21 (1998)

    Article  Google Scholar 

  47. Liu, C.-M.: Second-order random internal and surface waves in a two-fluid system. Geoph. Res. Lett. 33, L06610 (2006)

    Google Scholar 

  48. Lu, D.Q., Chwang, A.T.: Interfacial waves due to a singularity in a system of two semi-infinite fluids. Phys. Fluids 17, 102107 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Makarenko, N.I.: Mal’tseva, Zh.L.: Asymptotic models of internal stationary waves. J. Appl. Mech. Tech. Phys. 49(4), 646–654 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Matsuno, Y.A.: Unified theory of nonlinear wave propagation in two-layer fluid system. J. Phys. Soc. Japan 62(6), 1902–1916 (1993)

    Article  MathSciNet  Google Scholar 

  51. Murty, T.S.: Seismic Sea Waves: Tsunamis. Department of Fisheries and the Environment, Fisheries and Marine Service, Ottawa (1977)

    Google Scholar 

  52. Nayfeh, A.H.: Second-harmonic resonance in the interaction of a stream with capillary-gravity waves. J. Fluid Mech. 59, 803–816 (1973)

    Article  MATH  Google Scholar 

  53. Nayfeh, A.H.: Nonlinear propagation of wave-packets on fluid interface. Trans. ASME. Ser. E. 43(4), 584–588 (1976)

    Article  MATH  Google Scholar 

  54. Nikolayevskii, V.N., Ramazanov, T.K.: Theory of fast tectonic waves. J. Appl. Math. Mech. 49(3), 356–362 (1985)

    Article  MATH  Google Scholar 

  55. Ono, H.: Algebraic solitary waves in stratified fluids. J. Phys. Soc. Japan 39, 1082–1091 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  56. Papanicolaou, G.: Mathematical problems in geophysical wave propagation. In: Proceedings of the International Congress of Mathematicians, Berlin, 18–27 August 1998. Documanta Mathematica, vol. ICM 98 I, pp. 241–265

    Google Scholar 

  57. Papoulis, A.: A new method of inversion of the Laplace transform. Quart. Appl. Math. 14, 405–414 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  58. Pelinovskii, E.N.: Gidrodinamika voln tsunami (Hydrodynamics of Tsunami Waves). Institut Prikladnoi Fiziki, Nizhnii Novgorod (1996)

    Google Scholar 

  59. Potetyunko, E.N.: Volnovye dvizheniya zhidkosti so svobodnymi granitsami (Wave Motion of a Fluid with Free Boundaries). ROP SNIO, Rostov-na-Donu (1993)

    Google Scholar 

  60. Schneider, G., Wayne, C.E.: On the validity of 2D-surface water wave models. GAMM Mitt. Ges. Angew. Math. Mech. 25(1–2), 127–151 (2002)

    MathSciNet  MATH  Google Scholar 

  61. Segur, H.: The Korteweg-de Vries equation and water waves. Solutions of the equation. Part 1. J. Fluid Mech. 59(4), 721–736 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  62. Segur, H., Hammack, J.L.: Soliton models of long internal waves. J. Fluid Mech. 118, 285–304 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  63. Selezov, I.T.: Modelirovanie volnovykh i difraktsionnykh protsessov v sploshnykh sredakh (Modeling the Wave and Diffraction Processes in Continuous Media). Naukova Dumka, Kiev (1989)

    Google Scholar 

  64. Selezov, I.T.: Interaction of water waves with engineering constructions and topography in coastal area. In: Proceedings of the 5th International Conference on Coastal and Port Engineering in Developing Countries COPEDEC 5, Cape Town, South Africa, 19–23 April 1999, vol. 1, pp. 1–12

    Google Scholar 

  65. Selezov, I.T.: Some hyperbolic models for wave propagation. In: Fey, M., Jeltsch, R. (eds.) International Series of Numerical Mathematics. Hyperbolic Problems: Theory, Numerics, Applications, vol. 130, pp. 833–842. Birkhauser Verlag, Basel (1999)

    Google Scholar 

  66. Selezov, I.T.: Issledovanie neustanovivshykhsya volnovykh dvizhenii v gidrouprugikh sistemakh obolochka-zhidkost (Investigating the transient wave motions in hydroelastic shell-fluid systems). In: Prikladnye problemy mekhaniki tonkostennykh konstruktsii (Applied Problems in the Mechanics of Thin-Wall Constructions), pp. 286–305. Izdatelstvo Moskovskogo Universiteta, Moscow (2000)

    Google Scholar 

  67. Selezov, I.T.: Wave processes in fluids and elastic media. Int. J. Fluid Mech. Res. 30(2), 219–249 (2003)

    Article  MathSciNet  Google Scholar 

  68. Selezov, I.T.: Tsunami wave excitations by a local floor disturbance. In: Submarine Landslides and Tsunamis. NATO Sci. Ser. IV. Earth and Environmental Sci., vol. 21, pp. 139–150. Kluwer Academic Publishers, Netherlands (2003)

    Google Scholar 

  69. Selezov, I.T.: Some degenerate and generalized wave models in elasto- and hydrodynamics. J. Appl. Math. Mech. 67(6), 871–877 (2003)

    Article  MATH  Google Scholar 

  70. Selezov, I.T.: Modeling of tsunami wave generation and propagation. Int. J. Fluid Mech. Res. 33(1), 44–54 (2006)

    Article  MathSciNet  Google Scholar 

  71. Selezov, I.T., Avramenko, O.V.: Evolyutsiya nelineinykh volnovykh paketov s uchetom poverkhnostnogo natyazheniya na poverkhnosti kontakta (Evolution of nonlinear wave trains with allowance for the surface tension at the contact surface). Matematychni metody i fizyko-mekhanichni polia 44(2), 113–122 (2000)

    Google Scholar 

  72. Selezov, I.T., Avramenko, O.V.: Evolyutsionnoe uravnenie tretego poryadka dlya nelineinykh volnovykh paketov pri okolokriticheskikh volnovykh chislakh (A third-order evolution equation for nonlinear wave trains at near-critical wave numbers). Dinamicheskie sistemy 17, 58–67 (2001)

    Google Scholar 

  73. Selezov, I.T., Avramenko, O.V., Gurtovyi, Yu.V.: Osobennosti rasprostraneniya volnovykh paketov v dvukhsloinoi zhidkosti konechnoi glubiny (Peculiarities of wave train propagation in a two-layer fluid of finite depth). Prikladnaya gidromekhanika 7(1), 80–89 (2005)

    Google Scholar 

  74. Selezov, I.T., Avramenko, O.V., Gurtovyi, Yu.V.: Nelineinaya ustoichivost rasprostraneniya volnovykh paketov v dvukhsloinoi zhidkosti (Nonlinear stability of wave train propagation in a two-layer fluid). Prikladnaya gidromekhanika 8(4), 60–65 (2006)

    Google Scholar 

  75. Selezov, I.T., Avramenko, O.V., Gurtovyi, Yu.V.: Rasprostranenie nelineinykh volnovykh paketov pri okolokriticheskikh volnovykh chislakh v dvukhsloinoi zhidkosti konechnoi glubiny (Propagation of nonlinear wave trains at near-critical wave numbers in a two-layer fluid of finite depth). Matematychni metody i fizyko-mekhanichni polia 50(1), 91–97 (2007)

    Google Scholar 

  76. Selezov, I.T., Avramenko, O.V., Gurtovyi, Yu.V., Naradovyi, V.V.: Nonlinear interaction of internal and surface gravity waves in a two-layer fluid with a free surface. J. Math. Sci. 168(4), 590–602 (2010)

    Google Scholar 

  77. Selezov, I.T., Avramenko, O.V., Naradovyi, V.V.: Osobennosti rasprostraneniya slabonelineinykh voln v dvukhsloinoi zhidkosti so svobodnoi poverkhnostyu (Peculiarities of weakly nonlinear wave propagation in a two-layer fluid with a free surface). Dinamicheskie sistemy 1(1), 53–68 (2011)

    Google Scholar 

  78. Selezov, I., Avramenko, O., Nayfeh, A., Huq, P., Zeegers, N.: Propagation of water wave-packets at the interface of layer and half-space fluid. In: Nayfeh, A., Rozhdestvensky, K. (eds.) Proceedings of the 2nd International Conference on Asymptotics in Mechanics, St.-Petersburg, 13–16 October 1996, pp. 245–252. St.-Petersburg State Marine Technical University, St.-Petersburg (1997)

    Google Scholar 

  79. Selezov, I., Huq, P.: Asymptotic-heuristic analysis of nonlinear water wave propagation in two- and three-layer fluids. In: Nayfeh, A., Rozhdestvensky, K. (eds.) Proceedings of the 2nd International Conference on Asymptotics in Mechanics, St.-Petersburg, 13–16 October 1996, pp. 237–244. St.-Petersburg State Marine Technical University, St.-Petersburg (1997)

    Google Scholar 

  80. Selezov, I.T., Korsunsky, S.V.: Transformation of plane waves over moving or elastic bottom inhomogeneity. Rozprawy Hydrotechniczne 54, 49–54 (1991)

    Google Scholar 

  81. Selezov, I.T., Kuznetsov, V.V., Chernikov, D.O.: Generation of surface gravity waves by bottom time-repetitive pulses. J. Math. Sci. 171(5), 596–602 (2010)

    Article  Google Scholar 

  82. Selezov, I.T., Mironchuk, M.V., Huq, P.: Evolution equation for waves forced by a slender obstacle in a two-layer fluid. Dopovidi NAN Ukrainy 4, 77–82 (1999)

    MathSciNet  MATH  Google Scholar 

  83. Selezov, I.T., Ostroverkh, B.N.: Modelling of seismic underwater centers of generation and transformation of tsunami waves in seismic active regions. Marine Geophys. J. 1, 66–77 (1996)

    Google Scholar 

  84. Selezov, I.T., Sidorchuk, V.N., Yakovlev, V.V.: Transformatsiya voln v pribrezhnoi zone shelfa (Wave Transformation in the Coastal Shelf Zone). Naukova Dumka, Kiev (1982)

    Google Scholar 

  85. Selezov, I., Spirtus, V.: Propagation of disturbances along axial lines of tectonic flows under conditions of continuum destruction. In: Maruszewski, B.T., Muschik, W., Radowicz, A. (eds.) Proceedings of the International Symposium on Trends in Continuum Physics, Poznan, 17–20 August 1998, pp. 322–333. World Scientific, Singapore (1998)

    Google Scholar 

  86. Selezov, I.T., Volynskii, R.I., Suzdaltsev, A.I.: Chislennoe modelirovanie dinamiki tverdoi chastitsy v poverkhnostnykh gravitatsionnykh volnakh (Numerical modeling of the dynamics of a solid particle in surface gravity waves). Gidromekhanika 67, 67–71 (1993)

    Google Scholar 

  87. Selezov, I.T., Zheleznyak, M.I., Tkachenko, V.A., Yakovlev, V.V.: On the numerical modeling of tsunami wave generation and propagation. Mar. Geodesy 6(2), 149–165 (1983)

    Article  Google Scholar 

  88. Serebryanyi, A.N., Furduev, A.V., Aredov, A.A., Okhrimenko, N.N.: Shum vnutrennei volny bolshoi amplitudy v okeane (Noise from a large-amplitude internal wave in the ocean). Doklady RAN 402(4), 543–547 (2005)

    Google Scholar 

  89. Shingareva, I., Celaya, C.L.: On frequency-amplitude dependences for surface and internal standing waves. J. Comput. Appl. Math. 200(2), 459–470 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  90. Soloviev, S.L.: Tsunami (Tsunamis). Zemlya i Vselennaya 3, 12–16 (1980)

    Google Scholar 

  91. Sutherland, B.S., Nault, J.T.: Intrusive gravity currents propagating along thin and thick interfaces. J. Fluid Mech. 586, 109–118 (2007)

    Article  MATH  Google Scholar 

  92. Tanimoto, K.: On the hydraulic aspects of tsunami breakwaters in Japan. In: Iida, K., Iwasaki, T. (eds.) Tsunamis: Their Science and Engineering, pp. 423–435. Terra Scientific Publishing Co., Tokyo (1983)

    Google Scholar 

  93. Vincze, M., Kozma, P., Gyüre, B., Jánosi, I.M., Szabó, K.G., Tél, T.: Amplified internal pulsations on a stratified exchange flow excited by interaction between a thin sill and external seiche. Phys. Fluids 19, 108108 (2007)

    Article  MATH  Google Scholar 

  94. Volynski, R., Azmon, E., Selezov, I., Suzdaltsev, A.: Computer simulation of small particles transport in waves. In: Proceedings of the 26th Israel Conference on Mechanical Engineering, Technion City, Haifa, 21–22 May 1996, pp. 234–236

    Google Scholar 

  95. Wang, Y.-Sh., Yu, G.-L.: Re-polarization of elastic waves at a frictional contact interface—II. Incidence of a P or SV wave. Int. J. Solids and Struct. 36, 4563–4586 (1999)

    Google Scholar 

  96. Watson, K.M.: The coupling of surface and internal gravity waves revised. J. Phys. Oceanogr. 20, 1233–1248 (1990)

    Article  Google Scholar 

  97. Weyl, P.K.: Oceanography. An Introduction to the Marine Environment. John Wiley & Sons, New York (1970)

    Google Scholar 

  98. Whitham, G.B.: Linear and Nonlinear Waves. John Wiley & Sons, New York (1999)

    Book  MATH  Google Scholar 

  99. Yuen, H.C., Lake, B.M.: Nonlinear dynamics of deep-water waves. Adv. Appl. Mech. 22, 33–45 (1982)

    MathSciNet  MATH  Google Scholar 

  100. Zhou, C.P., Lee, J.H.W., Cheung, Y.K.: Instabilities and bifurcations of interfacial water waves. Phys. Fluids A 4(7), 1428–1438 (1992)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor T. Selezov .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Selezov, I.T., Kryvonos, Y.G., Gandzha, I.S. (2018). Propagation and Evolution of Transient Water Waves. In: Wave Propagation and Diffraction. Foundations of Engineering Mechanics. Springer, Singapore. https://doi.org/10.1007/978-981-10-4923-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4923-1_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4922-4

  • Online ISBN: 978-981-10-4923-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics