Skip to main content

Analytical and Numerical Solutions to the Wave Diffraction Problems

  • Chapter
  • First Online:
Wave Propagation and Diffraction

Part of the book series: Foundations of Engineering Mechanics ((FOUNDATIONS))

  • 1407 Accesses

Abstract

Wave interaction with rough bottom surfaces (topography), offshore drilling platforms and wave energy collectors is accompanied by the diffraction of waves. Here, an account is given of our research results in the field of wave diffraction. Specific aspects and methods used to solve the problems of the wave-diffraction theory are described in brief. The problem of wave diffraction by a submerged elliptical cylinder with elliptical lower face under an arbitrary incidence of plane waves is discussed. Wave diffraction by a submerged compound cylinder is also considered. Horizontal wave force is calculated as an example illustrating the dependence on the degree of submersion of the obstacle. Both the decrease of the submersion depth and the increase of the wave number are shown to favour the approach to the resonance range and thus worsen the reliability of the results. Scattering of magnetoacoustic waves by a cylinder is studied, the effect of magnetoelastic waves on the scattered field is demonstrated. Wave diffraction in a multiconnected domain formed by a set of vertical cylinders is analysed. The mutual influence of the cylinders is considerable for \( l/2a < 2 \), where l is the distance between the cylinders and 2a is the diameter. Interaction between diffracted fields is studied and the maximum lateral wave force that can also act outside the frontal cylinder is calculated. An exact analytical solution to the problem of wave diffraction by an asymmetrically inhomogeneous cylinder is found, the effect of asymmetry on the total scattering cross-section is analysed. An efficient numerical-analytical method is also considered, i.e. an auxiliary surface of simple shape (spherical or cylindrical) is introduced that surrounds the scatterer. In this case, the boundary-value problem can be subdivided into two problems, interior and exterior ones. The former is solved analytically in an infinite domain, the latter is solved numerically in a finite domain with a complex boundary. Furthermore, we study the wave diffraction by a prolate body of revolution consisting of a cylinder and spherical end cups. To solve the problem, a new finite-element algorithm is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belyaev, V.A., Selezov, I.T., Yakovlev, V.V.: Difraktsiya regulyarnykh voln na proizvolno raspolozhennoy sisteme vertikalnykh krugovykh tsilindrov (Diffraction of regular waves by an arbitrarily spaced system of vertical circular cylinders). Izvestiya AN SSSR. Mekhanika zhidkosti i gaza 1, 177–181 (1984)

    Google Scholar 

  2. Black, J.L., Mei, C.C., Bray, M.C.: Radiation and scattering of water waves by rigid bodies. J. Fluid Mech. 46(1), 151–164 (1971)

    Article  MATH  Google Scholar 

  3. Born, M.: Optik. Springer, Berlin (1933)

    Google Scholar 

  4. Borovikov, V.A.: Difraktsiya na mnogougolnikakh i mnogogrannikakh (Diffraction by Polygons and Polyhedra). Nauka, Moscow (1966)

    Google Scholar 

  5. Brebbia, C.A., Walker, S.: Dynamic Analysis of Offshore Structures. Butterworth-Heinemann Ltd., London (1979)

    Google Scholar 

  6. Cai, L.-W.: Evaluation of layered multiple-scattering method for antiplane shear wave scattering from gratings. J. Acoust. Soc. Am. 120(1), 49–61 (2006)

    Article  Google Scholar 

  7. Chakrabarti, S.K.: Wave forces on multiple vertical cylinders. J. Waterway Port Coast. Ocean Div. 104(2), 147–161 (1978)

    Google Scholar 

  8. Chen, H.S., Mei, C.C.: Wave forces on a stationary platform of elliptical shape. J. Ship Res. 17(2), 61–71 (1973)

    Google Scholar 

  9. D’Este, F., Codiglia, R., Contento, G.: On the side wall effects on the nonli-near wave loads on a TLP-like structure in a wave tank: analysis of the nonlinear near-trapping. In: Proceedings of the 12th International Offshore and Polar Engineering Conference, Kitakyushu, Japan, 26–31 May 2002, pp. 196–202

    Google Scholar 

  10. Doyle, T.E.: Iterative simulation of elastic wave scattering in arbitrary dispersions of spherical particles. J. Acoust. Soc. Am. 119(5), 2599–2610 (2006)

    Article  Google Scholar 

  11. Fejer, J.A.: Scattering of electromagnetic waves by a plasma cylinder. Phys. Fluids 7(3), 439–445 (1964)

    Article  Google Scholar 

  12. Ferrante, V., Vicinanza, D.: Spectral analysis of wave transformation behind submerged breakwater. In: Proceedings of the 16th International Offshore and Polar Engineering Conference, San Francisco, USA, 28 May–2 June 2006, vol. 3, pp. 727–733

    Google Scholar 

  13. Garrett, C.R.: Wave forces on a circular doc. J. Fluid Mech. 46(1), 129–139 (1971)

    Article  MATH  Google Scholar 

  14. Haskind, M.D.: Gidrodinamicheskaya teoriya kachki korablya (The Hydrodynamic Theory of Ship Rolling). Nauka, Moscow (1973)

    Google Scholar 

  15. Hönl, H., Maue, A.W., Westpfahl, K.: Theorie der Beugung. Springer, Berlin (1961)

    Google Scholar 

  16. Isaacson, M.: Fixed and floating axisymmetric structure in waves. J. Waterway Port Coast. Ocean Eng. 108(2), 180–189 (1982)

    Google Scholar 

  17. Ivanov, E.A.: Difraktsiya elektromagnitnykh voln na dvukh telakh (Diffraction of Electromagnetic Waves by Two Bodies). Nauka i Tekhnika, Minsk (1968)

    Google Scholar 

  18. Kagemoto, H., Murai, M., Saito, M., Molin, B., Malenica, S.: Experimental and theoretical analysis of the wave decay along a long array of vertical cylinders. J. Fluid Mech. 456, 113–135 (2002)

    Article  MATH  Google Scholar 

  19. Kamke, E.: Handbook of Ordinary Differential Equations. Chelsea Publishing (1976)

    Google Scholar 

  20. Karlsson, A., Kristensson, G.: Wave splitting in the time domain for a radially symmetric geometry. Wave Motion 12(3), 197–211 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Katsenelenbaum, B.Z.: High-Frequency Electrodynamics. Wiley-VCH, Weinheim (2006)

    Google Scholar 

  22. Kee, S.T.: Submerged horizontal and vertical membrane wave barrier. In: Proceedings of the 15th International Offshore and Polar Engineering Conference, Seoul, South Korea, 19–24 June 2005, vol. 3, pp. 587–594

    Google Scholar 

  23. Kim, J.W., Kyoung, J.H., Ertekin, R.C., Bai, K.J.: Finite-element computation of wave-structure interaction between steep Stokes waves and vertical cylinders. J. Waterway Port Coast. Ocean Eng. 5, 337–347 (2006)

    Google Scholar 

  24. Kim, M.H.: Interaction of waves with N vertical circular cylinders. J. Waterway Port Coast. Ocean Eng. 119(6), 671–689 (1993)

    Google Scholar 

  25. Kim, M.H., Natvig, B.J., Mercier, R.S., Gu, G., Wu, C.: PC-based computation for second-order wave loads on large volume multi-column structures. In: Proceedings of the 5th International Offshore and Polar Engineering Conference, Hague, Netherlands, 11–16 June 1995, pp. 561–570

    Google Scholar 

  26. Kornilov, I.E.: Primenenie metoda konechnykh elementov k raschetu obtekaniya mnogo-svyaznykh oblastei potentsialnym potokom szhimaemoi zhidkosti (Finite-element analysis of the circumfluence of multiply-connected domains by a potential flow of compressible fluid). In: Matematicheskie Metody Issledovaniya Gidrodinamicheskikh Techenii (Mathematical Methods of Investigating the Hydrodynamical Flows), pp. 38–41. Naukova Dumka, Kiev (1978)

    Google Scholar 

  27. Kratzer, A., Franz, W.: Transzendente Funktionen. Akademische Verlagsgesellschaft Geest & Portig, Leipzig (1960)

    Google Scholar 

  28. Kryvonos, Yu.G., Kornilov, I.E., Noga, Yu.V., Selezov, I.T.: Chislennoe issledovanie volnovykh polei ot proizvolnykh tel vrashcheniya i neodnorodnostei (Numerical investigation of the wave fields from arbitrary bodies of revolution and inhomogeneities). Preprint, Institute of Cybernetics AN USSR, Kiev (1983)

    Google Scholar 

  29. Kryvonos, Yu.G., Selezov, I.T.: Upravlenie diagrammoi napravlennosti pri rasseyanii tsilindricheskoi akusticheskoi volny na tsilindre v poluogranichennoi oblasti (Controlling the directional diagram during the scattering of a cylindrical acoustic wave by a cylinder in a semibounded domain). In: Kibernetika i vychislitelnaya tekhnika. Slozhnye sistemy upravleniya (Cybernetics and Computational Techniques. Complex Control Systems), vol. 8, pp. 102–109. Naukova Dumka, Kiev (1971)

    Google Scholar 

  30. Linton, C.M., Evans, D.V.: The interaction of waves with arrays of vertical circular cylinders. J. Fluid Mech. 215, 549–569 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Malenica, S., Taylor, R.E., Huang, J.B.: Second-order water wave diffraction by an array of vertical cylinders. J. Fluid Mech. 390, 349–373 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Massel, S.B.: Interaction of water waves with cylinder barrier. J. Waterways Harbors Coast Eng. Div. 102(2), 165–187 (1976)

    Google Scholar 

  33. Mavrakos, S.A., Koumoutsakos, P.: Hydrodynamic interaction among vertical axisymmetric bodies restrained in waves. Appl. Ocean Res. 9(3), 128–140 (1987)

    Article  Google Scholar 

  34. McLachlan, N.W.: Theory and Application of Mathieu Functions. Dover, New York (1964)

    MATH  Google Scholar 

  35. Miles, J.W., Gilbert, F.: Scattering of gravity waves by a circular dock. J. Fluid Mech. 34(4), 783–793 (1968)

    Article  MATH  Google Scholar 

  36. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. Parts 1 & 2. McGraw-Hill, New York (1953)

    Google Scholar 

  37. Nozaka, M., Takaku, K.: Scattering of electromagnetic waves by a cylindrically inhomogeneous plasma. J. Phys. Soc. Jpn. 24(1), 172–184 (1968)

    Article  Google Scholar 

  38. Parkinson, R.G., Kharadly, M.M.Z.: Experimental study of scattering of electromagnetic waves by radially inhomogeneous cylinders. Can. J. Phys. 49(23), 2989–2996 (1971)

    Article  Google Scholar 

  39. Peter, M.A., Meylan, M.N.: Water-wave scattering by a semi-infinite periodic array of arbitrary bodies. J. Fluid Mech. 575, 473–494 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Selezov, I.T.: Rasprostranenie magnitouprugikh voln napryazheniya ot tsilindricheskoi polosti v provodyashchei srede (Propagation of magnetoelastic stress waves from a cylindrical cavity in the conducting medium). Zhurnal prikladnoi mekhaniki i tekhnicheskoi fiziki 2, 15–20 (1969)

    Google Scholar 

  41. Selezov, I.T.: Dyfraktsiia khvyl na tsylindri v pruzhnomu pivprostori (Wave diffraction by a cylinder in an elastic half-space). Dopovidi AN URSR. Ser. A 3, 259–264 (1970)

    Google Scholar 

  42. Selezov, I.T.: Diffraction of waves by convex bodies in semibounded regions. Soviet Appl. Mech. 6(3), 258–263 (1970)

    Article  Google Scholar 

  43. Selezov, I.T.: Nekotorye zadachi difraktsii i rasseyaniya voln prostranstvennymi neodnorodnostyami v okeane i atmosphere (Some problems of wave diffraction and scattering by spatial inhomogeneities in the ocean and atmosphere). In: Teoreticheskie i eksperimentalnye issledovaniya poverkhnostnykh i vnutrennikh voln (Theoretical and Experimental Studies of Surface and Internal Waves), pp. 7–18. Institute of Marine Hydrophysics, Sevastopol (1980)

    Google Scholar 

  44. Selezov, I.T.: Numerical solution of the boundary value problems of the wave diffraction by arbitrary revolution surfaces. In: Numerical Methods. Colloquia Mathematica Societatis János Bolyai, vol. 50, pp. 473–480. North-Holland, Amsterdam (1987)

    Google Scholar 

  45. Selezov, I.T.: Modelirovanie volnovykh i difraktsionnykh protsessov v sploshnykh sredakh (Modeling the Wave and Diffraction Processes in Continuous Media). Naukova Dumka, Kiev (1989)

    Google Scholar 

  46. Selezov, I.T.: Rasprostranenie i transformatsiya poverkhnostnykh gravitatsionnykh voln v zhidkosti konechnoi glubiny (Propagation and transformation of surface gravity waves in a finite-depth fluid). In: Itogi nauki i tekhniki. Ser. Mekhanika zhidkosti i gaza (Science and Technology Review. Ser. Mechanics of Fluids and Gases), vol. 24, pp. 3–76. VINITI, Moscow (1990)

    Google Scholar 

  47. Selezov, I.T.: Diffraction of waves by radially inhomogeneous inclusions. Phys. Express 1(2), 101–115 (1993)

    MathSciNet  Google Scholar 

  48. Selezov, I.T.: Propagation and diffraction of waves in locally inhomogeneous and bound structures. Int. J. Fluid Mech. Research 23(1–2), 81–95 (1996)

    Article  MathSciNet  Google Scholar 

  49. Selezov, I.T., Korsunskii, S.V.: Nestatsionarnye i nelineynye volny v elektroprovodyashchikh sredakh (Nonstationary and Nonlinear Waves in Electrically Conducting Media). Naukova Dumka, Kiev (1991)

    Google Scholar 

  50. Selezov, I.T., Kryvonos, Yu.G.: Rasseyanie akusticheskikh voln na tsilindre v poluogra-nichennoi oblasti (Scattering of acoustic waves by a cylinder in a semibounded domain). Gidromekhanika 15, 99–106 (1969)

    Google Scholar 

  51. Selezov, I.T., Kryvonos, Yu.G.: Rozsiiannia akustychnoi khvyli na sferi v napivobmezhenii oblasti (Scattering of an acoustic wave by a sphere in a semibounded domain). Dopovidi AN URSR. Ser. A 7, 632–636 (1969)

    Google Scholar 

  52. Selezov, I.T., Kryvonos, Yu.G.: Rozsiiannia elektromahnitnykh khvyl na tsylindri v napivobmezhenii oblasti (Scattering of electromagnetic waves by a cylinder in a semibounded domain). Dopovidi AN URSR. Ser. A. 4, 367–372 (1970)

    Google Scholar 

  53. Selezov, I.T., Kryvonos, Yu.G.: Statsionarna zadacha rozsiiannia tsylindrychnoi mahnito-akustychnoi khvyli na idealnoprovidnomu tsylindri (A stationary problem of scattering of a cylindrical magnetoacoustic wave by an ideally conducting cylinder). Dopovidi AN URSR. Ser. A 2, 169–173 (1971)

    Google Scholar 

  54. Selezov, I.T., Kryvonos, Yu.G., Yakovlev, V.V.: Rasseyanie voln lokalnymi neodnorodnostyami v sploshnykh sredakh (Wave Scattering by Local Inhomogeneities in Continuous Media). Naukova Dumka, Kiev (1985)

    Google Scholar 

  55. Selezov, I.T., Lazarenko, M.A.: Rozsiiannia ta dyfraktsiia pruzhnykh khvyl na sferi, rozmischenii u pivprostori (Scattering and diffraction of elastic waves by a sphere located in a half-space). Dopovidi AN URSR. Ser. A 2, 179–182 (1966)

    Google Scholar 

  56. Selezov, I.T., Selezova, L.V.: The flow of an ionized gas around an oscillating boundary in the presence of a magnetic field. Magnetohydrodynamics 3(1), 5–10 (1967)

    Google Scholar 

  57. Selezov, I.T., Sidorchuk, V.N., Yakovlev, V.V.: Transformatsiya voln v pribrezhnoi zone shelfa (Wave Transformation in the Coastal Shelf Zone). Naukova Dumka, Kiev (1983)

    Google Scholar 

  58. Selezov, I.T., Svechnikova, K.M.: Difraktsiya poverkhnostnykh gravitatsionnykh voln na zatoplennom tsilindre, raspolozhennom na krugovom osnovanii (Diffraction of surface gravity waves by a submerged cylinder located on a circular base). Dinamicheskie sistemy 24, 33–37 (2008)

    Google Scholar 

  59. Selezov, I.T., Tkachenko, V.A., Yakovlev, V.V.: Difraktsiya voln tsunami na podvodnom beregovom sklone krugovogo ostrova (Diffraction of tsunami waves by an underwater coastal slope of a circular island). In: Generatsiya tsunami i vykhod voln na bereg (Tsunami Generation and Wave Run-Up on the Coast), pp. 41–46. Radio i svyaz, Moscow (1984)

    Google Scholar 

  60. Selezov, I.T., Vanina, E.G.: Difraktsiya gidrodinamicheskikh voln na polupogruzhennom vertikalnom ellipticheskom tsilindre s neploskim tortsom (Diffraction of hydrodynamic waves by a partially submerged elliptical cylinder with nonflat base). Dopovidi AN URSR. Ser. A 5, 33–37 (1986)

    Google Scholar 

  61. Selezov, I.T., Yakovlev, V.V.: Problems of plane-wave diffraction by a variable-density cylinder. Soviet Physics—Acoustics 23(5), 460–462 (1977)

    Google Scholar 

  62. Selezov, I.T., Yakovlev, V.V.: Difraktsiya voln na simmetrichnykh neodnorodnostyakh (Wave Diffraction by Symmetric Inhomogeneities). Naukova Dumka, Kiev (1978)

    Google Scholar 

  63. Sheikh, R., Swan, C.: Wave slamming on vertical surface-piercing cylinders: the role of nonlinear wave scattering. In: Proceedings of the 15th International Offshore and Polar Engineering Conference, Seoul, South Korea, 19–24 June 2005, vol. 3, pp. 652–659

    Google Scholar 

  64. Shenderov, E.L.: Difraktsiya tsilindricheskoi zvukovoi volny na tsilindre (Diffraction of a cylindrical acoustic wave by a cylinder). Akusticheckii zhurnal 7(3), 370–374 (1961)

    MathSciNet  Google Scholar 

  65. Shenderov, E.L.: Volnovye zadachi gidroakustiki (Wave Problems of Hydroacoustics). Sudostroyenie, Leningrad (1972)

    Google Scholar 

  66. Sleeman, B.D.: Acoustic scattering by inhomogeneous media. Q. J. Mech. Appl. Math. 33(4), 373–383 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  67. Spring, B.H., Monkmeyer, P.L.: Interaction of plane waves with vertical cylinders. In: Proceedings of the 14th International Conference on Coastal Engineering, Copenhagen, Denmark, 24–28 June 1974, vol. 3, pp. 1828–1847. American Society of Civil Engineers, New York (1975)

    Google Scholar 

  68. Sun, L., Li, Y., Teng, B., Zhang, N.: Wave action on structures of combined cylinders. China Ocean Eng. 19(3), 375–384 (2005)

    Google Scholar 

  69. Swan, C., Sheikh, R.: The interaction between steep waves and a surface-piercing column. Philos. Trans. R. Soc. Lond. A 373(2033), 20140114 (2015)

    Article  Google Scholar 

  70. Takayama, T., Goda, Y.: Wave forces on a semi-submerged vertical cylinder of elliptical shape. Coast. Eng. Jpn. 16, 147–164 (1973)

    Google Scholar 

  71. Tikhonov, A.N., Samarskii, A.A.: Equations of Mathematical Physics. Dover Publication, New York (2011)

    MATH  Google Scholar 

  72. Tsubogo, T.: Near-resonance of diffraction waves by an array of plates on shallow water in oblique waves. In: Proceedings of the 10th International Offshore and Polar Engineering Conference, Seattle, USA, 27 May–2 June 2000, vol. 3, pp. 154–164

    Google Scholar 

  73. Twersky, V.: Multiple scattering of radiation by an arbitrary configuration of parallel cylinders. J. Acoust. Soc. Am. 24(1), 42–46 (1952)

    Article  MATH  Google Scholar 

  74. Vanina, E.G.: Rasseyanie poverkhnostnykh gravitatsionnykh voln ellipticheskimi neodnorodnostyami (Scattering of surface gravity waves by elliptical inhomogeneities). Dopovidi AN URSR. Ser. A 4, 29–32 (1984)

    MathSciNet  Google Scholar 

  75. Vasilenko, V.A.: Splain-funktsii: teoriya, algoritmy, programmy (Spline Functions: Theory, Algorithms, Programs). Nauka, Novosibirsk (1983)

    MATH  Google Scholar 

  76. Vissers, F.P.L.M., Kamp, L.P.J., Sluijter, F.W.: Some generalizations of radial Bremmer series. Wave Motion 13(1), 43–51 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  77. Walker, S.: Boundary elements in fluid-structure interaction problems of rotational shells. Appl. Math. Model. 4, 345–350 (1980)

    Article  MATH  Google Scholar 

  78. Williams, A.N.: Wave diffraction by elliptical breakwaters in shallow water. Ocean Eng. 12(1), 25–43 (1985)

    Article  Google Scholar 

  79. Williams, A.N., Li, W.: Water wave interaction with an array of bottom-mounted surface-piercing porous cylinders. Ocean Eng. 27, 841–866 (2000)

    Article  Google Scholar 

  80. Yilmaz, O.: Hydrodynamic interactions of waves with group of truncated vertical cylinders. J. Waterway Port Coast. Ocean Eng. 124, 272–279 (1998)

    Google Scholar 

  81. Young, J.W., Bertrand, J.C.: Multiple scattering by two cylinders. J. Acoust. Soc. Am. 58(6), 1190–1195 (1975)

    Article  Google Scholar 

  82. Zavyalov, Yu.S., Kvasov, B.I., Miroshnichenko, V.D.: Metody splain-funktsii (Methods of Spline Functions). Nauka, Moscow (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor T. Selezov .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Selezov, I.T., Kryvonos, Y.G., Gandzha, I.S. (2018). Analytical and Numerical Solutions to the Wave Diffraction Problems. In: Wave Propagation and Diffraction. Foundations of Engineering Mechanics. Springer, Singapore. https://doi.org/10.1007/978-981-10-4923-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4923-1_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4922-4

  • Online ISBN: 978-981-10-4923-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics